org.bouncycastle.crypto.modes.gcm.GCMUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.modes.gcm;
import org.bouncycastle.crypto.util.Pack;
import org.bouncycastle.util.Arrays;
abstract class GCMUtil
{
static byte[] oneAsBytes()
{
byte[] tmp = new byte[16];
tmp[0] = (byte)0x80;
return tmp;
}
static int[] oneAsInts()
{
int[] tmp = new int[4];
tmp[0] = 0x80000000;
return tmp;
}
static byte[] asBytes(int[] ns)
{
byte[] output = new byte[16];
Pack.intToBigEndian(ns, output, 0);
return output;
}
static int[] asInts(byte[] bs)
{
int[] output = new int[4];
Pack.bigEndianToInt(bs, 0, output);
return output;
}
static void asInts(byte[] bs, int[] output)
{
Pack.bigEndianToInt(bs, 0, output);
}
static void multiply(byte[] block, byte[] val)
{
byte[] tmp = Arrays.clone(block);
byte[] c = new byte[16];
for (int i = 0; i < 16; ++i)
{
byte bits = val[i];
for (int j = 7; j >= 0; --j)
{
if ((bits & (1 << j)) != 0)
{
xor(c, tmp);
}
boolean lsb = (tmp[15] & 1) != 0;
shiftRight(tmp);
if (lsb)
{
// R = new byte[]{ 0xe1, ... };
// GCMUtil.xor(v, R);
tmp[0] ^= (byte)0xe1;
}
}
}
System.arraycopy(c, 0, block, 0, 16);
}
// P is the value with only bit i=1 set
static void multiplyP(int[] x)
{
boolean lsb = (x[3] & 1) != 0;
shiftRight(x);
if (lsb)
{
// R = new int[]{ 0xe1000000, 0, 0, 0 };
// xor(v, R);
x[0] ^= 0xe1000000;
}
}
static void multiplyP(int[] x, int[] output)
{
boolean lsb = (x[3] & 1) != 0;
shiftRight(x, output);
if (lsb)
{
output[0] ^= 0xe1000000;
}
}
// P is the value with only bit i=1 set
static void multiplyP8(int[] x)
{
// for (int i = 8; i != 0; --i)
// {
// multiplyP(x);
// }
int lsw = x[3];
shiftRightN(x, 8);
for (int i = 7; i >= 0; --i)
{
if ((lsw & (1 << i)) != 0)
{
x[0] ^= (0xe1000000 >>> (7 - i));
}
}
}
static void multiplyP8(int[] x, int[] output)
{
int lsw = x[3];
shiftRightN(x, 8, output);
for (int i = 7; i >= 0; --i)
{
if ((lsw & (1 << i)) != 0)
{
output[0] ^= (0xe1000000 >>> (7 - i));
}
}
}
static void shiftRight(byte[] block)
{
int i = 0;
int bit = 0;
for (;;)
{
int b = block[i] & 0xff;
block[i] = (byte) ((b >>> 1) | bit);
if (++i == 16)
{
break;
}
bit = (b & 1) << 7;
}
}
static void shiftRight(byte[] block, byte[] output)
{
int i = 0;
int bit = 0;
for (;;)
{
int b = block[i] & 0xff;
output[i] = (byte) ((b >>> 1) | bit);
if (++i == 16)
{
break;
}
bit = (b & 1) << 7;
}
}
static void shiftRight(int[] block)
{
int i = 0;
int bit = 0;
for (;;)
{
int b = block[i];
block[i] = (b >>> 1) | bit;
if (++i == 4)
{
break;
}
bit = b << 31;
}
}
static void shiftRight(int[] block, int[] output)
{
int i = 0;
int bit = 0;
for (;;)
{
int b = block[i];
output[i] = (b >>> 1) | bit;
if (++i == 4)
{
break;
}
bit = b << 31;
}
}
static void shiftRightN(int[] block, int n)
{
int i = 0;
int bits = 0;
for (;;)
{
int b = block[i];
block[i] = (b >>> n) | bits;
if (++i == 4)
{
break;
}
bits = b << (32 - n);
}
}
static void shiftRightN(int[] block, int n, int[] output)
{
int i = 0;
int bits = 0;
for (;;)
{
int b = block[i];
output[i] = (b >>> n) | bits;
if (++i == 4)
{
break;
}
bits = b << (32 - n);
}
}
static void xor(byte[] block, byte[] val)
{
for (int i = 15; i >= 0; --i)
{
block[i] ^= val[i];
}
}
static void xor(byte[] block, byte[] val, int off, int len)
{
while (len-- > 0)
{
block[len] ^= val[off + len];
}
}
static void xor(byte[] block, byte[] val, byte[] output)
{
for (int i = 15; i >= 0; --i)
{
output[i] = (byte)(block[i] ^ val[i]);
}
}
static void xor(int[] block, int[] val)
{
for (int i = 3; i >= 0; --i)
{
block[i] ^= val[i];
}
}
static void xor(int[] block, int[] val, int[] output)
{
for (int i = 3; i >= 0; --i)
{
output[i] = block[i] ^ val[i];
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy