org.bouncycastle.crypto.tls.TlsUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.tls;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.EOFException;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Hashtable;
import java.util.Vector;
import org.bouncycastle.asn1.ASN1ObjectIdentifier;
import org.bouncycastle.asn1.nist.NISTObjectIdentifiers;
import org.bouncycastle.asn1.pkcs.PKCSObjectIdentifiers;
import org.bouncycastle.asn1.x509.Extensions;
import org.bouncycastle.asn1.x509.KeyUsage;
import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.asn1.x509.X509ObjectIdentifiers;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.digests.MD5Digest;
import org.bouncycastle.crypto.digests.SHA1Digest;
import org.bouncycastle.crypto.digests.SHA224Digest;
import org.bouncycastle.crypto.digests.SHA256Digest;
import org.bouncycastle.crypto.digests.SHA384Digest;
import org.bouncycastle.crypto.digests.SHA512Digest;
import org.bouncycastle.crypto.macs.HMac;
import org.bouncycastle.crypto.params.AsymmetricKeyParameter;
import org.bouncycastle.crypto.params.DSAPublicKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.crypto.params.RSAKeyParameters;
import org.bouncycastle.crypto.util.PublicKeyFactory;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Integers;
import org.bouncycastle.util.Strings;
import org.bouncycastle.util.io.Streams;
/**
* Some helper functions for MicroTLS.
*/
public class TlsUtils
{
public static byte[] EMPTY_BYTES = new byte[0];
public static final Integer EXT_signature_algorithms = Integers.valueOf(ExtensionType.signature_algorithms);
public static boolean isValidUint8(short i)
{
return (i & 0xFF) == i;
}
public static boolean isValidUint16(int i)
{
return (i & 0xFFFF) == i;
}
public static boolean isValidUint24(int i)
{
return (i & 0xFFFFFF) == i;
}
public static boolean isValidUint32(long i)
{
return (i & 0xFFFFFFFFL) == i;
}
public static boolean isValidUint48(long i)
{
return (i & 0xFFFFFFFFFFFFL) == i;
}
public static boolean isValidUint64(long i)
{
return true;
}
public static void writeUint8(short i, OutputStream output)
throws IOException
{
output.write(i);
}
public static void writeUint8(short i, byte[] buf, int offset)
{
buf[offset] = (byte)i;
}
public static void writeUint16(int i, OutputStream output)
throws IOException
{
output.write(i >> 8);
output.write(i);
}
public static void writeUint16(int i, byte[] buf, int offset)
{
buf[offset] = (byte)(i >> 8);
buf[offset + 1] = (byte)i;
}
public static void writeUint24(int i, OutputStream output)
throws IOException
{
output.write(i >> 16);
output.write(i >> 8);
output.write(i);
}
public static void writeUint24(int i, byte[] buf, int offset)
{
buf[offset] = (byte)(i >> 16);
buf[offset + 1] = (byte)(i >> 8);
buf[offset + 2] = (byte)(i);
}
public static void writeUint32(long i, OutputStream output)
throws IOException
{
output.write((int)(i >> 24));
output.write((int)(i >> 16));
output.write((int)(i >> 8));
output.write((int)(i));
}
public static void writeUint32(long i, byte[] buf, int offset)
{
buf[offset] = (byte)(i >> 24);
buf[offset + 1] = (byte)(i >> 16);
buf[offset + 2] = (byte)(i >> 8);
buf[offset + 3] = (byte)(i);
}
public static void writeUint48(long i, byte[] buf, int offset)
{
buf[offset] = (byte)(i >> 40);
buf[offset + 1] = (byte)(i >> 32);
buf[offset + 2] = (byte)(i >> 24);
buf[offset + 3] = (byte)(i >> 16);
buf[offset + 4] = (byte)(i >> 8);
buf[offset + 5] = (byte)(i);
}
public static void writeUint64(long i, OutputStream output)
throws IOException
{
output.write((int)(i >> 56));
output.write((int)(i >> 48));
output.write((int)(i >> 40));
output.write((int)(i >> 32));
output.write((int)(i >> 24));
output.write((int)(i >> 16));
output.write((int)(i >> 8));
output.write((int)(i));
}
public static void writeUint64(long i, byte[] buf, int offset)
{
buf[offset] = (byte)(i >> 56);
buf[offset + 1] = (byte)(i >> 48);
buf[offset + 2] = (byte)(i >> 40);
buf[offset + 3] = (byte)(i >> 32);
buf[offset + 4] = (byte)(i >> 24);
buf[offset + 5] = (byte)(i >> 16);
buf[offset + 6] = (byte)(i >> 8);
buf[offset + 7] = (byte)(i);
}
public static void writeOpaque8(byte[] buf, OutputStream output)
throws IOException
{
writeUint8((short)buf.length, output);
output.write(buf);
}
public static void writeOpaque16(byte[] buf, OutputStream output)
throws IOException
{
writeUint16(buf.length, output);
output.write(buf);
}
public static void writeOpaque24(byte[] buf, OutputStream output)
throws IOException
{
writeUint24(buf.length, output);
output.write(buf);
}
public static void writeUint8Array(short[] uints, OutputStream output)
throws IOException
{
for (int i = 0; i < uints.length; ++i)
{
writeUint8(uints[i], output);
}
}
public static void writeUint16Array(int[] uints, OutputStream output)
throws IOException
{
for (int i = 0; i < uints.length; ++i)
{
writeUint16(uints[i], output);
}
}
public static short readUint8(InputStream input)
throws IOException
{
int i = input.read();
if (i < 0)
{
throw new EOFException();
}
return (short)i;
}
public static short readUint8(byte[] buf, int offset)
{
return (short)buf[offset];
}
public static int readUint16(InputStream input)
throws IOException
{
int i1 = input.read();
int i2 = input.read();
if (i2 < 0)
{
throw new EOFException();
}
return i1 << 8 | i2;
}
public static int readUint16(byte[] buf, int offset)
{
int n = (buf[offset] & 0xff) << 8;
n |= (buf[++offset] & 0xff);
return n;
}
public static int readUint24(InputStream input)
throws IOException
{
int i1 = input.read();
int i2 = input.read();
int i3 = input.read();
if (i3 < 0)
{
throw new EOFException();
}
return (i1 << 16) | (i2 << 8) | i3;
}
public static int readUint24(byte[] buf, int offset)
{
int n = (buf[offset] & 0xff) << 16;
n |= (buf[++offset] & 0xff) << 8;
n |= (buf[++offset] & 0xff);
return n;
}
public static long readUint32(InputStream input)
throws IOException
{
int i1 = input.read();
int i2 = input.read();
int i3 = input.read();
int i4 = input.read();
if (i4 < 0)
{
throw new EOFException();
}
return (((long)i1) << 24) | (((long)i2) << 16) | (((long)i3) << 8) | ((long)i4);
}
public static long readUint48(InputStream input)
throws IOException
{
int i1 = input.read();
int i2 = input.read();
int i3 = input.read();
int i4 = input.read();
int i5 = input.read();
int i6 = input.read();
if (i6 < 0)
{
throw new EOFException();
}
return (((long)i1) << 40) | (((long)i2) << 32) | (((long)i3) << 24) | (((long)i4) << 16) | (((long)i5) << 8) | ((long)i6);
}
public static long readUint48(byte[] buf, int offset)
{
int hi = readUint24(buf, offset);
int lo = readUint24(buf, offset + 3);
return ((long)(hi & 0xffffffffL) << 24) | (long)(lo & 0xffffffffL);
}
public static byte[] readFully(int length, InputStream input)
throws IOException
{
if (length < 1)
{
return EMPTY_BYTES;
}
byte[] buf = new byte[length];
if (length != Streams.readFully(input, buf))
{
throw new EOFException();
}
return buf;
}
public static void readFully(byte[] buf, InputStream input)
throws IOException
{
int length = buf.length;
if (length > 0 && length != Streams.readFully(input, buf))
{
throw new EOFException();
}
}
public static byte[] readOpaque8(InputStream input)
throws IOException
{
short length = readUint8(input);
return readFully(length, input);
}
public static byte[] readOpaque16(InputStream input)
throws IOException
{
int length = readUint16(input);
return readFully(length, input);
}
public static byte[] readOpaque24(InputStream input)
throws IOException
{
int length = readUint24(input);
return readFully(length, input);
}
public static short[] readUint8Array(int count, InputStream input)
throws IOException
{
short[] uints = new short[count];
for (int i = 0; i < count; ++i)
{
uints[i] = readUint8(input);
}
return uints;
}
public static int[] readUint16Array(int count, InputStream input)
throws IOException
{
int[] uints = new int[count];
for (int i = 0; i < count; ++i)
{
uints[i] = readUint16(input);
}
return uints;
}
public static ProtocolVersion readVersion(byte[] buf, int offset)
throws IOException
{
return ProtocolVersion.get(buf[offset] & 0xFF, buf[offset + 1] & 0xFF);
}
public static ProtocolVersion readVersion(InputStream input)
throws IOException
{
int i1 = input.read();
int i2 = input.read();
if (i2 < 0)
{
throw new EOFException();
}
return ProtocolVersion.get(i1, i2);
}
public static int readVersionRaw(InputStream input)
throws IOException
{
int i1 = input.read();
int i2 = input.read();
if (i2 < 0)
{
throw new EOFException();
}
return (i1 << 8) | i2;
}
public static void writeGMTUnixTime(byte[] buf, int offset)
{
int t = (int)(System.currentTimeMillis() / 1000L);
buf[offset] = (byte)(t >> 24);
buf[offset + 1] = (byte)(t >> 16);
buf[offset + 2] = (byte)(t >> 8);
buf[offset + 3] = (byte)t;
}
public static void writeVersion(ProtocolVersion version, OutputStream output)
throws IOException
{
output.write(version.getMajorVersion());
output.write(version.getMinorVersion());
}
public static void writeVersion(ProtocolVersion version, byte[] buf, int offset)
throws IOException
{
buf[offset] = (byte)version.getMajorVersion();
buf[offset + 1] = (byte)version.getMinorVersion();
}
public static Vector getDefaultDSSSignatureAlgorithms()
{
return vectorOfOne(new SignatureAndHashAlgorithm(HashAlgorithm.sha1, SignatureAlgorithm.dsa));
}
public static Vector getDefaultECDSASignatureAlgorithms()
{
return vectorOfOne(new SignatureAndHashAlgorithm(HashAlgorithm.sha1, SignatureAlgorithm.ecdsa));
}
public static Vector getDefaultRSASignatureAlgorithms()
{
return vectorOfOne(new SignatureAndHashAlgorithm(HashAlgorithm.sha1, SignatureAlgorithm.rsa));
}
public static boolean isSignatureAlgorithmsExtensionAllowed(ProtocolVersion clientVersion)
{
return ProtocolVersion.TLSv12.isEqualOrEarlierVersionOf(clientVersion.getEquivalentTLSVersion());
}
/**
* Add a 'signature_algorithms' extension to existing extensions.
*
* @param extensions A {@link Hashtable} to add the extension to.
* @param supportedSignatureAlgorithms {@link Vector} containing at least 1 {@link SignatureAndHashAlgorithm}.
* @throws IOException
*/
public static void addSignatureAlgorithmsExtension(Hashtable extensions, Vector supportedSignatureAlgorithms)
throws IOException
{
extensions.put(EXT_signature_algorithms, createSignatureAlgorithmsExtension(supportedSignatureAlgorithms));
}
/**
* Get a 'signature_algorithms' extension from extensions.
*
* @param extensions A {@link Hashtable} to get the extension from, if it is present.
* @return A {@link Vector} containing at least 1 {@link SignatureAndHashAlgorithm}, or null.
* @throws IOException
*/
public static Vector getSignatureAlgorithmsExtension(Hashtable extensions)
throws IOException
{
if (extensions == null)
{
return null;
}
byte[] extensionValue = (byte[])extensions.get(EXT_signature_algorithms);
if (extensionValue == null)
{
return null;
}
return readSignatureAlgorithmsExtension(extensionValue);
}
/**
* Create a 'signature_algorithms' extension value.
*
* @param supportedSignatureAlgorithms A {@link Vector} containing at least 1 {@link SignatureAndHashAlgorithm}.
* @return A byte array suitable for use as an extension value.
* @throws IOException
*/
public static byte[] createSignatureAlgorithmsExtension(Vector supportedSignatureAlgorithms)
throws IOException
{
if (supportedSignatureAlgorithms == null || supportedSignatureAlgorithms.size() < 1 || supportedSignatureAlgorithms.size() >= (1 << 15))
{
throw new IllegalArgumentException(
"'supportedSignatureAlgorithms' must have length from 1 to (2^15 - 1)");
}
ByteArrayOutputStream buf = new ByteArrayOutputStream();
// supported_signature_algorithms
TlsUtils.writeUint16(2 * supportedSignatureAlgorithms.size(), buf);
for (int i = 0; i < supportedSignatureAlgorithms.size(); ++i)
{
SignatureAndHashAlgorithm entry = (SignatureAndHashAlgorithm)supportedSignatureAlgorithms.elementAt(i);
entry.encode(buf);
}
return buf.toByteArray();
}
/**
* Read a 'signature_algorithms' extension value.
*
* @param extensionValue The extension value.
* @return A {@link Vector} containing at least 1 {@link SignatureAndHashAlgorithm}.
* @throws IOException
*/
public static Vector readSignatureAlgorithmsExtension(byte[] extensionValue)
throws IOException
{
if (extensionValue == null)
{
throw new IllegalArgumentException("'extensionValue' cannot be null");
}
ByteArrayInputStream buf = new ByteArrayInputStream(extensionValue);
// supported_signature_algorithms
int length = TlsUtils.readUint16(buf);
if (length < 2 || (length & 1) != 0)
{
throw new TlsFatalAlert(AlertDescription.decode_error);
}
int count = length / 2;
Vector result = new Vector(count);
for (int i = 0; i < count; ++i)
{
SignatureAndHashAlgorithm entry = SignatureAndHashAlgorithm.parse(buf);
result.addElement(entry);
}
TlsProtocol.assertEmpty(buf);
return result;
}
public static byte[] PRF(TlsContext context, byte[] secret, String asciiLabel, byte[] seed, int size)
{
ProtocolVersion version = context.getServerVersion();
if (version.isSSL())
{
throw new IllegalStateException("No PRF available for SSLv3 session");
}
byte[] label = Strings.toByteArray(asciiLabel);
byte[] labelSeed = concat(label, seed);
int prfAlgorithm = context.getSecurityParameters().getPrfAlgorithm();
if (prfAlgorithm == PRFAlgorithm.tls_prf_legacy)
{
if (!ProtocolVersion.TLSv12.isEqualOrEarlierVersionOf(version.getEquivalentTLSVersion()))
{
return PRF_legacy(secret, label, labelSeed, size);
}
prfAlgorithm = PRFAlgorithm.tls_prf_sha256;
}
Digest prfDigest = createPRFHash(prfAlgorithm);
byte[] buf = new byte[size];
hmac_hash(prfDigest, secret, labelSeed, buf);
return buf;
}
static byte[] PRF_legacy(byte[] secret, byte[] label, byte[] labelSeed, int size)
{
int s_half = (secret.length + 1) / 2;
byte[] s1 = new byte[s_half];
byte[] s2 = new byte[s_half];
System.arraycopy(secret, 0, s1, 0, s_half);
System.arraycopy(secret, secret.length - s_half, s2, 0, s_half);
byte[] b1 = new byte[size];
byte[] b2 = new byte[size];
hmac_hash(new MD5Digest(), s1, labelSeed, b1);
hmac_hash(new SHA1Digest(), s2, labelSeed, b2);
for (int i = 0; i < size; i++)
{
b1[i] ^= b2[i];
}
return b1;
}
static byte[] concat(byte[] a, byte[] b)
{
byte[] c = new byte[a.length + b.length];
System.arraycopy(a, 0, c, 0, a.length);
System.arraycopy(b, 0, c, a.length, b.length);
return c;
}
static void hmac_hash(Digest digest, byte[] secret, byte[] seed, byte[] out)
{
HMac mac = new HMac(digest);
KeyParameter param = new KeyParameter(secret);
byte[] a = seed;
int size = digest.getDigestSize();
int iterations = (out.length + size - 1) / size;
byte[] buf = new byte[mac.getMacSize()];
byte[] buf2 = new byte[mac.getMacSize()];
for (int i = 0; i < iterations; i++)
{
mac.init(param);
mac.update(a, 0, a.length);
mac.doFinal(buf, 0);
a = buf;
mac.init(param);
mac.update(a, 0, a.length);
mac.update(seed, 0, seed.length);
mac.doFinal(buf2, 0);
System.arraycopy(buf2, 0, out, (size * i), Math.min(size, out.length - (size * i)));
}
}
static void validateKeyUsage(org.bouncycastle.asn1.x509.Certificate c, int keyUsageBits)
throws IOException
{
Extensions exts = c.getTBSCertificate().getExtensions();
if (exts != null)
{
KeyUsage ku = KeyUsage.fromExtensions(exts);
if (ku != null)
{
int bits = ku.getBytes()[0] & 0xff;
if ((bits & keyUsageBits) != keyUsageBits)
{
throw new TlsFatalAlert(AlertDescription.certificate_unknown);
}
}
}
}
static byte[] calculateKeyBlock(TlsContext context, int size)
{
SecurityParameters securityParameters = context.getSecurityParameters();
byte[] master_secret = securityParameters.getMasterSecret();
byte[] seed = concat(securityParameters.getServerRandom(),
securityParameters.getClientRandom());
if (context.getServerVersion().isSSL())
{
return calculateKeyBlock_SSL(master_secret, seed, size);
}
return PRF(context, master_secret, ExporterLabel.key_expansion, seed, size);
}
static byte[] calculateKeyBlock_SSL(byte[] master_secret, byte[] random, int size)
{
Digest md5 = new MD5Digest();
Digest sha1 = new SHA1Digest();
int md5Size = md5.getDigestSize();
byte[] shatmp = new byte[sha1.getDigestSize()];
byte[] tmp = new byte[size + md5Size];
int i = 0, pos = 0;
while (pos < size)
{
byte[] ssl3Const = SSL3_CONST[i];
sha1.update(ssl3Const, 0, ssl3Const.length);
sha1.update(master_secret, 0, master_secret.length);
sha1.update(random, 0, random.length);
sha1.doFinal(shatmp, 0);
md5.update(master_secret, 0, master_secret.length);
md5.update(shatmp, 0, shatmp.length);
md5.doFinal(tmp, pos);
pos += md5Size;
++i;
}
byte rval[] = new byte[size];
System.arraycopy(tmp, 0, rval, 0, size);
return rval;
}
static byte[] calculateMasterSecret(TlsContext context, byte[] pre_master_secret)
{
SecurityParameters securityParameters = context.getSecurityParameters();
byte[] seed = concat(securityParameters.getClientRandom(), securityParameters.getServerRandom());
if (context.getServerVersion().isSSL())
{
return calculateMasterSecret_SSL(pre_master_secret, seed);
}
return PRF(context, pre_master_secret, ExporterLabel.master_secret, seed, 48);
}
static byte[] calculateMasterSecret_SSL(byte[] pre_master_secret, byte[] random)
{
Digest md5 = new MD5Digest();
Digest sha1 = new SHA1Digest();
int md5Size = md5.getDigestSize();
byte[] shatmp = new byte[sha1.getDigestSize()];
byte[] rval = new byte[md5Size * 3];
int pos = 0;
for (int i = 0; i < 3; ++i)
{
byte[] ssl3Const = SSL3_CONST[i];
sha1.update(ssl3Const, 0, ssl3Const.length);
sha1.update(pre_master_secret, 0, pre_master_secret.length);
sha1.update(random, 0, random.length);
sha1.doFinal(shatmp, 0);
md5.update(pre_master_secret, 0, pre_master_secret.length);
md5.update(shatmp, 0, shatmp.length);
md5.doFinal(rval, pos);
pos += md5Size;
}
return rval;
}
static byte[] calculateVerifyData(TlsContext context, String asciiLabel, byte[] handshakeHash)
{
if (context.getServerVersion().isSSL())
{
return handshakeHash;
}
SecurityParameters securityParameters = context.getSecurityParameters();
byte[] master_secret = securityParameters.getMasterSecret();
int verify_data_length = securityParameters.getVerifyDataLength();
return PRF(context, master_secret, asciiLabel, handshakeHash, verify_data_length);
}
public static final Digest createHash(int hashAlgorithm)
{
switch (hashAlgorithm)
{
case HashAlgorithm.md5:
return new MD5Digest();
case HashAlgorithm.sha1:
return new SHA1Digest();
case HashAlgorithm.sha224:
return new SHA224Digest();
case HashAlgorithm.sha256:
return new SHA256Digest();
case HashAlgorithm.sha384:
return new SHA384Digest();
case HashAlgorithm.sha512:
return new SHA512Digest();
default:
throw new IllegalArgumentException("unknown HashAlgorithm");
}
}
public static final Digest cloneHash(int hashAlgorithm, Digest hash)
{
switch (hashAlgorithm)
{
case HashAlgorithm.md5:
return new MD5Digest((MD5Digest)hash);
case HashAlgorithm.sha1:
return new SHA1Digest((SHA1Digest)hash);
case HashAlgorithm.sha224:
return new SHA224Digest((SHA224Digest)hash);
case HashAlgorithm.sha256:
return new SHA256Digest((SHA256Digest)hash);
case HashAlgorithm.sha384:
return new SHA384Digest((SHA384Digest)hash);
case HashAlgorithm.sha512:
return new SHA512Digest((SHA512Digest)hash);
default:
throw new IllegalArgumentException("unknown HashAlgorithm");
}
}
public static final Digest createPRFHash(int prfAlgorithm)
{
switch (prfAlgorithm)
{
case PRFAlgorithm.tls_prf_legacy:
return new CombinedHash();
default:
return createHash(getHashAlgorithmForPRFAlgorithm(prfAlgorithm));
}
}
public static final Digest clonePRFHash(int prfAlgorithm, Digest hash)
{
switch (prfAlgorithm)
{
case PRFAlgorithm.tls_prf_legacy:
return new CombinedHash((CombinedHash)hash);
default:
return cloneHash(getHashAlgorithmForPRFAlgorithm(prfAlgorithm), hash);
}
}
public static final short getHashAlgorithmForPRFAlgorithm(int prfAlgorithm)
{
switch (prfAlgorithm)
{
case PRFAlgorithm.tls_prf_legacy:
throw new IllegalArgumentException("legacy PRF not a valid algorithm");
case PRFAlgorithm.tls_prf_sha256:
return HashAlgorithm.sha256;
case PRFAlgorithm.tls_prf_sha384:
return HashAlgorithm.sha384;
default:
throw new IllegalArgumentException("unknown PRFAlgorithm");
}
}
public static ASN1ObjectIdentifier getOIDForHashAlgorithm(int hashAlgorithm)
{
switch (hashAlgorithm)
{
case HashAlgorithm.md5:
return PKCSObjectIdentifiers.md5;
case HashAlgorithm.sha1:
return X509ObjectIdentifiers.id_SHA1;
case HashAlgorithm.sha224:
return NISTObjectIdentifiers.id_sha224;
case HashAlgorithm.sha256:
return NISTObjectIdentifiers.id_sha256;
case HashAlgorithm.sha384:
return NISTObjectIdentifiers.id_sha384;
case HashAlgorithm.sha512:
return NISTObjectIdentifiers.id_sha512;
default:
throw new IllegalArgumentException("unknown HashAlgorithm");
}
}
static short getClientCertificateType(Certificate clientCertificate, Certificate serverCertificate)
throws IOException
{
if (clientCertificate.isEmpty())
{
return -1;
}
org.bouncycastle.asn1.x509.Certificate x509Cert = clientCertificate.getCertificateAt(0);
SubjectPublicKeyInfo keyInfo = x509Cert.getSubjectPublicKeyInfo();
try
{
AsymmetricKeyParameter publicKey = PublicKeyFactory.createKey(keyInfo);
if (publicKey.isPrivate())
{
throw new TlsFatalAlert(AlertDescription.internal_error);
}
/*
* TODO RFC 5246 7.4.6. The certificates MUST be signed using an acceptable hash/
* signature algorithm pair, as described in Section 7.4.4. Note that this relaxes the
* constraints on certificate-signing algorithms found in prior versions of TLS.
*/
/*
* RFC 5246 7.4.6. Client Certificate
*/
/*
* RSA public key; the certificate MUST allow the key to be used for signing with the
* signature scheme and hash algorithm that will be employed in the certificate verify
* message.
*/
if (publicKey instanceof RSAKeyParameters)
{
validateKeyUsage(x509Cert, KeyUsage.digitalSignature);
return ClientCertificateType.rsa_sign;
}
/*
* DSA public key; the certificate MUST allow the key to be used for signing with the
* hash algorithm that will be employed in the certificate verify message.
*/
if (publicKey instanceof DSAPublicKeyParameters)
{
validateKeyUsage(x509Cert, KeyUsage.digitalSignature);
return ClientCertificateType.dss_sign;
}
/*
* ECDSA-capable public key; the certificate MUST allow the key to be used for signing
* with the hash algorithm that will be employed in the certificate verify message; the
* public key MUST use a curve and point format supported by the server.
*/
if (publicKey instanceof ECPublicKeyParameters)
{
validateKeyUsage(x509Cert, KeyUsage.digitalSignature);
// TODO Check the curve and point format
return ClientCertificateType.ecdsa_sign;
}
// TODO Add support for ClientCertificateType.*_fixed_*
}
catch (Exception e)
{
}
throw new TlsFatalAlert(AlertDescription.unsupported_certificate);
}
public static boolean hasSigningCapability(short clientCertificateType)
{
switch (clientCertificateType)
{
case ClientCertificateType.dss_sign:
case ClientCertificateType.ecdsa_sign:
case ClientCertificateType.rsa_sign:
return true;
default:
return false;
}
}
public static TlsSigner createTlsSigner(short clientCertificateType)
{
switch (clientCertificateType)
{
case ClientCertificateType.dss_sign:
return new TlsDSSSigner();
case ClientCertificateType.ecdsa_sign:
return new TlsECDSASigner();
case ClientCertificateType.rsa_sign:
return new TlsRSASigner();
default:
throw new IllegalArgumentException("'clientCertificateType' is not a type with signing capability");
}
}
static final byte[] SSL_CLIENT = {0x43, 0x4C, 0x4E, 0x54};
static final byte[] SSL_SERVER = {0x53, 0x52, 0x56, 0x52};
// SSL3 magic mix constants ("A", "BB", "CCC", ...)
static final byte[][] SSL3_CONST = genConst();
private static byte[][] genConst()
{
int n = 10;
byte[][] arr = new byte[n][];
for (int i = 0; i < n; i++)
{
byte[] b = new byte[i + 1];
Arrays.fill(b, (byte)('A' + i));
arr[i] = b;
}
return arr;
}
private static Vector vectorOfOne(Object obj)
{
Vector v = new Vector(1);
v.addElement(obj);
return v;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy