All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.ECAlgorithms Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.math.ec;

import java.math.BigInteger;

public class ECAlgorithms
{
    public static ECPoint sumOfTwoMultiplies(ECPoint P, BigInteger a,
        ECPoint Q, BigInteger b)
    {
        ECCurve cp = P.getCurve();
        Q = importPoint(cp, Q);

        // Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
        if (cp instanceof ECCurve.F2m)
        {
            ECCurve.F2m f2mCurve = (ECCurve.F2m)cp;
            if (f2mCurve.isKoblitz())
            {
                return P.multiply(a).add(Q.multiply(b));
            }
        }

        return implShamirsTrick(P, a, Q, b);
    }

    /*
     * "Shamir's Trick", originally due to E. G. Straus
     * (Addition chains of vectors. American Mathematical Monthly,
     * 71(7):806-808, Aug./Sept. 1964)
     * 
     * Input: The points P, Q, scalar k = (km?, ... , k1, k0)
     * and scalar l = (lm?, ... , l1, l0).
     * Output: R = k * P + l * Q.
     * 1: Z <- P + Q
     * 2: R <- O
     * 3: for i from m-1 down to 0 do
     * 4:        R <- R + R        {point doubling}
     * 5:        if (ki = 1) and (li = 0) then R <- R + P end if
     * 6:        if (ki = 0) and (li = 1) then R <- R + Q end if
     * 7:        if (ki = 1) and (li = 1) then R <- R + Z end if
     * 8: end for
     * 9: return R
     * 
*/ public static ECPoint shamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l) { ECCurve cp = P.getCurve(); Q = importPoint(cp, Q); return implShamirsTrick(P, k, Q, l); } public static ECPoint importPoint(ECCurve c, ECPoint p) { ECCurve cp = p.getCurve(); if (!c.equals(cp)) { throw new IllegalArgumentException("Point must be on the same curve"); } return c.importPoint(p); } static void implMontgomeryTrick(ECFieldElement[] zs, int off, int len) { /* * Uses the "Montgomery Trick" to invert many field elements, with only a single actual * field inversion. See e.g. the paper: * "Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick" * by Katsuyuki Okeya, Kouichi Sakurai. */ ECFieldElement[] c = new ECFieldElement[len]; c[0] = zs[off]; int i = 0; while (++i < len) { c[i] = c[i - 1].multiply(zs[off + i]); } ECFieldElement u = c[--i].invert(); while (i > 0) { int j = off + i--; ECFieldElement tmp = zs[j]; zs[j] = c[i].multiply(u); u = u.multiply(tmp); } zs[off] = u; } static ECPoint implShamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l) { ECCurve curve = P.getCurve(); ECPoint infinity = curve.getInfinity(); // TODO conjugate co-Z addition (ZADDC) can return both of these ECPoint PaddQ = P.add(Q); ECPoint PsubQ = P.subtract(Q); ECPoint[] points = new ECPoint[]{ Q, PsubQ, P, PaddQ }; curve.normalizeAll(points); ECPoint[] table = new ECPoint[] { points[3].negate(), points[2].negate(), points[1].negate(), points[0].negate(), infinity, points[0], points[1], points[2], points[3] }; byte[] jsf = WNafUtil.generateJSF(k, l); ECPoint R = infinity; int i = jsf.length; while (--i >= 0) { int jsfi = jsf[i]; int kDigit = (jsfi >> 4), lDigit = ((jsfi << 28) >> 28); int index = 4 + (kDigit * 3) + lDigit; R = R.twicePlus(table[index]); } return R; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy