org.bouncycastle.math.ec.ECCurve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.math.ec;
import java.math.BigInteger;
import java.util.Random;
import org.bouncycastle.util.BigIntegers;
/**
* base class for an elliptic curve
*/
public abstract class ECCurve
{
public static final int COORD_AFFINE = 0;
public static final int COORD_HOMOGENEOUS = 1;
public static final int COORD_JACOBIAN = 2;
public static final int COORD_JACOBIAN_CHUDNOVSKY = 3;
public static final int COORD_JACOBIAN_MODIFIED = 4;
public static final int COORD_LAMBDA_AFFINE = 5;
public static final int COORD_LAMBDA_PROJECTIVE = 6;
public static final int COORD_SKEWED = 7;
public static int[] getAllCoordinateSystems()
{
return new int[]{ COORD_AFFINE, COORD_HOMOGENEOUS, COORD_JACOBIAN, COORD_JACOBIAN_CHUDNOVSKY,
COORD_JACOBIAN_MODIFIED, COORD_LAMBDA_AFFINE, COORD_LAMBDA_PROJECTIVE, COORD_SKEWED };
}
public class Config
{
protected int coord;
protected ECMultiplier multiplier;
Config(int coord, ECMultiplier multiplier)
{
this.coord = coord;
this.multiplier = multiplier;
}
public Config setCoordinateSystem(int coord)
{
this.coord = coord;
return this;
}
public Config setMultiplier(ECMultiplier multiplier)
{
this.multiplier = multiplier;
return this;
}
public ECCurve create()
{
if (!supportsCoordinateSystem(coord))
{
throw new IllegalStateException("unsupported coordinate system");
}
ECCurve c = cloneCurve();
if (c == ECCurve.this)
{
throw new IllegalStateException("implementation returned current curve");
}
c.coord = coord;
c.multiplier = multiplier;
return c;
}
}
protected ECFieldElement a, b;
protected int coord = COORD_AFFINE;
protected ECMultiplier multiplier = null;
public abstract int getFieldSize();
public abstract ECFieldElement fromBigInteger(BigInteger x);
public Config configure()
{
return new Config(this.coord, this.multiplier);
}
public ECPoint createPoint(BigInteger x, BigInteger y)
{
return createPoint(x, y, false);
}
/**
* @deprecated per-point compression property will be removed, use {@link #createPoint(BigInteger, BigInteger)}
* and refer {@link ECPoint#getEncoded(boolean)}
*/
public ECPoint createPoint(BigInteger x, BigInteger y, boolean withCompression)
{
return createRawPoint(fromBigInteger(x), fromBigInteger(y), withCompression);
}
protected abstract ECCurve cloneCurve();
protected abstract ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, boolean withCompression);
protected ECMultiplier createDefaultMultiplier()
{
return new WNafL2RMultiplier();
}
public boolean supportsCoordinateSystem(int coord)
{
return coord == COORD_AFFINE;
}
public PreCompInfo getPreCompInfo(ECPoint p)
{
checkPoint(p);
return p.preCompInfo;
}
/**
* Sets the PreCompInfo
for a point on this curve. Used by
* ECMultiplier
s to save the precomputation for this ECPoint
for use
* by subsequent multiplication.
*
* @param point
* The ECPoint
to store precomputations for.
* @param preCompInfo
* The values precomputed by the ECMultiplier
.
*/
public void setPreCompInfo(ECPoint point, PreCompInfo preCompInfo)
{
checkPoint(point);
point.preCompInfo = preCompInfo;
}
public ECPoint importPoint(ECPoint p)
{
if (this == p.getCurve())
{
return p;
}
if (p.isInfinity())
{
return getInfinity();
}
// TODO Default behaviour could be improved if the two curves have the same coordinate system by copying any Z coordinates.
p = p.normalize();
return createPoint(p.getXCoord().toBigInteger(), p.getYCoord().toBigInteger(), p.withCompression);
}
/**
* Normalization ensures that any projective coordinate is 1, and therefore that the x, y
* coordinates reflect those of the equivalent point in an affine coordinate system. Where more
* than one point is to be normalized, this method will generally be more efficient than
* normalizing each point separately.
*
* @param points
* An array of points that will be updated in place with their normalized versions,
* where necessary
*/
public void normalizeAll(ECPoint[] points)
{
checkPoints(points);
if (this.getCoordinateSystem() == ECCurve.COORD_AFFINE)
{
return;
}
/*
* Figure out which of the points actually need to be normalized
*/
ECFieldElement[] zs = new ECFieldElement[points.length];
int[] indices = new int[points.length];
int count = 0;
for (int i = 0; i < points.length; ++i)
{
ECPoint p = points[i];
if (null != p && !p.isNormalized())
{
zs[count] = p.getZCoord(0);
indices[count++] = i;
}
}
if (count == 0)
{
return;
}
ECAlgorithms.implMontgomeryTrick(zs, 0, count);
for (int j = 0; j < count; ++j)
{
int index = indices[j];
points[index] = points[index].normalize(zs[j]);
}
}
public abstract ECPoint getInfinity();
public ECFieldElement getA()
{
return a;
}
public ECFieldElement getB()
{
return b;
}
public int getCoordinateSystem()
{
return coord;
}
protected abstract ECPoint decompressPoint(int yTilde, BigInteger X1);
/**
* Sets the default ECMultiplier
, unless already set.
*/
public ECMultiplier getMultiplier()
{
if (this.multiplier == null)
{
this.multiplier = createDefaultMultiplier();
}
return this.multiplier;
}
/**
* Decode a point on this curve from its ASN.1 encoding. The different
* encodings are taken account of, including point compression for
* Fp
(X9.62 s 4.2.1 pg 17).
* @return The decoded point.
*/
public ECPoint decodePoint(byte[] encoded)
{
ECPoint p = null;
int expectedLength = (getFieldSize() + 7) / 8;
switch (encoded[0])
{
case 0x00: // infinity
{
if (encoded.length != 1)
{
throw new IllegalArgumentException("Incorrect length for infinity encoding");
}
p = getInfinity();
break;
}
case 0x02: // compressed
case 0x03: // compressed
{
if (encoded.length != (expectedLength + 1))
{
throw new IllegalArgumentException("Incorrect length for compressed encoding");
}
int yTilde = encoded[0] & 1;
BigInteger X = BigIntegers.fromUnsignedByteArray(encoded, 1, expectedLength);
p = decompressPoint(yTilde, X);
break;
}
case 0x04: // uncompressed
case 0x06: // hybrid
case 0x07: // hybrid
{
if (encoded.length != (2 * expectedLength + 1))
{
throw new IllegalArgumentException("Incorrect length for uncompressed/hybrid encoding");
}
BigInteger X = BigIntegers.fromUnsignedByteArray(encoded, 1, expectedLength);
BigInteger Y = BigIntegers.fromUnsignedByteArray(encoded, 1 + expectedLength, expectedLength);
p = createPoint(X, Y);
break;
}
default:
throw new IllegalArgumentException("Invalid point encoding 0x" + Integer.toString(encoded[0], 16));
}
return p;
}
protected void checkPoint(ECPoint point)
{
if (null == point || (this != point.getCurve()))
{
throw new IllegalArgumentException("'point' must be non-null and on this curve");
}
}
protected void checkPoints(ECPoint[] points)
{
if (points == null)
{
throw new IllegalArgumentException("'points' cannot be null");
}
for (int i = 0; i < points.length; ++i)
{
ECPoint point = points[i];
if (null != point && this != point.getCurve())
{
throw new IllegalArgumentException("'points' entries must be null or on this curve");
}
}
}
/**
* Elliptic curve over Fp
*/
public static class Fp extends ECCurve
{
private static final int FP_DEFAULT_COORDS = COORD_JACOBIAN_MODIFIED;
BigInteger q, r;
ECPoint.Fp infinity;
public Fp(BigInteger q, BigInteger a, BigInteger b)
{
this.q = q;
this.r = ECFieldElement.Fp.calculateResidue(q);
this.infinity = new ECPoint.Fp(this, null, null);
this.a = fromBigInteger(a);
this.b = fromBigInteger(b);
this.coord = FP_DEFAULT_COORDS;
}
protected Fp(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b)
{
this.q = q;
this.r = r;
this.infinity = new ECPoint.Fp(this, null, null);
this.a = a;
this.b = b;
this.coord = FP_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new Fp(q, r, a, b);
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_AFFINE:
case COORD_HOMOGENEOUS:
case COORD_JACOBIAN:
case COORD_JACOBIAN_MODIFIED:
return true;
default:
return false;
}
}
public BigInteger getQ()
{
return q;
}
public int getFieldSize()
{
return q.bitLength();
}
public ECFieldElement fromBigInteger(BigInteger x)
{
return new ECFieldElement.Fp(this.q, this.r, x);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, boolean withCompression)
{
return new ECPoint.Fp(this, x, y, withCompression);
}
public ECPoint importPoint(ECPoint p)
{
if (this != p.getCurve() && this.getCoordinateSystem() == COORD_JACOBIAN && !p.isInfinity())
{
switch (p.getCurve().getCoordinateSystem())
{
case COORD_JACOBIAN:
case COORD_JACOBIAN_CHUDNOVSKY:
case COORD_JACOBIAN_MODIFIED:
return new ECPoint.Fp(this,
fromBigInteger(p.x.toBigInteger()),
fromBigInteger(p.y.toBigInteger()),
new ECFieldElement[]{ fromBigInteger(p.zs[0].toBigInteger()) },
p.withCompression);
default:
break;
}
}
return super.importPoint(p);
}
protected ECPoint decompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement x = fromBigInteger(X1);
ECFieldElement alpha = x.multiply(x.square().add(a)).add(b);
ECFieldElement beta = alpha.sqrt();
//
// if we can't find a sqrt we haven't got a point on the
// curve - run!
//
if (beta == null)
{
throw new RuntimeException("Invalid point compression");
}
BigInteger betaValue = beta.toBigInteger();
if (betaValue.testBit(0) != (yTilde == 1))
{
// Use the other root
beta = fromBigInteger(q.subtract(betaValue));
}
return new ECPoint.Fp(this, x, beta, true);
}
public ECPoint getInfinity()
{
return infinity;
}
public boolean equals(
Object anObject)
{
if (anObject == this)
{
return true;
}
if (!(anObject instanceof ECCurve.Fp))
{
return false;
}
ECCurve.Fp other = (ECCurve.Fp) anObject;
return this.q.equals(other.q)
&& a.equals(other.a) && b.equals(other.b);
}
public int hashCode()
{
return a.hashCode() ^ b.hashCode() ^ q.hashCode();
}
}
/**
* Elliptic curves over F2m. The Weierstrass equation is given by
* y2 + xy = x3 + ax2 + b
.
*/
public static class F2m extends ECCurve
{
private static final int F2M_DEFAULT_COORDS = COORD_AFFINE;
/**
* The exponent m
of F2m
.
*/
private int m; // can't be final - JDK 1.1
/**
* TPB: The integer k
where xm +
* xk + 1
represents the reduction polynomial
* f(z)
.
* PPB: The integer k1
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
private int k1; // can't be final - JDK 1.1
/**
* TPB: Always set to 0
* PPB: The integer k2
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
private int k2; // can't be final - JDK 1.1
/**
* TPB: Always set to 0
* PPB: The integer k3
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
private int k3; // can't be final - JDK 1.1
/**
* The order of the base point of the curve.
*/
private BigInteger n; // can't be final - JDK 1.1
/**
* The cofactor of the curve.
*/
private BigInteger h; // can't be final - JDK 1.1
/**
* The point at infinity on this curve.
*/
private ECPoint.F2m infinity; // can't be final - JDK 1.1
/**
* The parameter μ
of the elliptic curve if this is
* a Koblitz curve.
*/
private byte mu = 0;
/**
* The auxiliary values s0
and
* s1
used for partial modular reduction for
* Koblitz curves.
*/
private BigInteger[] si = null;
/**
* Constructor for Trinomial Polynomial Basis (TPB).
* @param m The exponent m
of
* F2m
.
* @param k The integer k
where xm +
* xk + 1
represents the reduction
* polynomial f(z)
.
* @param a The coefficient a
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param b The coefficient b
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
*/
public F2m(
int m,
int k,
BigInteger a,
BigInteger b)
{
this(m, k, 0, 0, a, b, null, null);
}
/**
* Constructor for Trinomial Polynomial Basis (TPB).
* @param m The exponent m
of
* F2m
.
* @param k The integer k
where xm +
* xk + 1
represents the reduction
* polynomial f(z)
.
* @param a The coefficient a
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param b The coefficient b
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param n The order of the main subgroup of the elliptic curve.
* @param h The cofactor of the elliptic curve, i.e.
* #Ea(F2m) = h * n
.
*/
public F2m(
int m,
int k,
BigInteger a,
BigInteger b,
BigInteger n,
BigInteger h)
{
this(m, k, 0, 0, a, b, n, h);
}
/**
* Constructor for Pentanomial Polynomial Basis (PPB).
* @param m The exponent m
of
* F2m
.
* @param k1 The integer k1
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k2 The integer k2
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k3 The integer k3
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param a The coefficient a
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param b The coefficient b
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
*/
public F2m(
int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b)
{
this(m, k1, k2, k3, a, b, null, null);
}
/**
* Constructor for Pentanomial Polynomial Basis (PPB).
* @param m The exponent m
of
* F2m
.
* @param k1 The integer k1
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k2 The integer k2
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k3 The integer k3
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param a The coefficient a
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param b The coefficient b
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param n The order of the main subgroup of the elliptic curve.
* @param h The cofactor of the elliptic curve, i.e.
* #Ea(F2m) = h * n
.
*/
public F2m(
int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b,
BigInteger n,
BigInteger h)
{
this.m = m;
this.k1 = k1;
this.k2 = k2;
this.k3 = k3;
this.n = n;
this.h = h;
if (k1 == 0)
{
throw new IllegalArgumentException("k1 must be > 0");
}
if (k2 == 0)
{
if (k3 != 0)
{
throw new IllegalArgumentException("k3 must be 0 if k2 == 0");
}
}
else
{
if (k2 <= k1)
{
throw new IllegalArgumentException("k2 must be > k1");
}
if (k3 <= k2)
{
throw new IllegalArgumentException("k3 must be > k2");
}
}
this.infinity = new ECPoint.F2m(this, null, null);
this.a = fromBigInteger(a);
this.b = fromBigInteger(b);
this.coord = F2M_DEFAULT_COORDS;
}
protected F2m(int m, int k1, int k2, int k3, ECFieldElement a, ECFieldElement b, BigInteger n, BigInteger h)
{
this.m = m;
this.k1 = k1;
this.k2 = k2;
this.k3 = k3;
this.n = n;
this.h = h;
this.infinity = new ECPoint.F2m(this, null, null);
this.a = a;
this.b = b;
this.coord = F2M_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new F2m(m, k1, k2, k3, a, b, n, h);
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_AFFINE:
case COORD_HOMOGENEOUS:
case COORD_LAMBDA_PROJECTIVE:
return true;
default:
return false;
}
}
protected ECMultiplier createDefaultMultiplier()
{
if (isKoblitz())
{
return new WTauNafMultiplier();
}
return super.createDefaultMultiplier();
}
public int getFieldSize()
{
return m;
}
public ECFieldElement fromBigInteger(BigInteger x)
{
return new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3, x);
}
public ECPoint createPoint(BigInteger x, BigInteger y, boolean withCompression)
{
ECFieldElement X = fromBigInteger(x), Y = fromBigInteger(y);
switch (this.getCoordinateSystem())
{
case COORD_LAMBDA_AFFINE:
case COORD_LAMBDA_PROJECTIVE:
{
if (!X.isZero())
{
// Y becomes Lambda (X + Y/X) here
Y = Y.divide(X).add(X);
}
break;
}
default:
{
break;
}
}
return createRawPoint(X, Y, withCompression);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, boolean withCompression)
{
return new ECPoint.F2m(this, x, y, withCompression);
}
public ECPoint getInfinity()
{
return infinity;
}
/**
* Returns true if this is a Koblitz curve (ABC curve).
* @return true if this is a Koblitz curve (ABC curve), false otherwise
*/
public boolean isKoblitz()
{
return n != null && h != null && a.bitLength() <= 1 && b.bitLength() == 1;
}
/**
* Returns the parameter μ
of the elliptic curve.
* @return μ
of the elliptic curve.
* @throws IllegalArgumentException if the given ECCurve is not a
* Koblitz curve.
*/
synchronized byte getMu()
{
if (mu == 0)
{
mu = Tnaf.getMu(this);
}
return mu;
}
/**
* @return the auxiliary values s0
and
* s1
used for partial modular reduction for
* Koblitz curves.
*/
synchronized BigInteger[] getSi()
{
if (si == null)
{
si = Tnaf.getSi(this);
}
return si;
}
/**
* Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
*
* @param yTilde
* ~yp, an indication bit for the decompression of yp.
* @param X1
* The field element xp.
* @return the decompressed point.
*/
protected ECPoint decompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement xp = fromBigInteger(X1);
ECFieldElement yp = null;
if (xp.isZero())
{
yp = (ECFieldElement.F2m)b;
for (int i = 0; i < m - 1; i++)
{
yp = yp.square();
}
}
else
{
ECFieldElement beta = xp.add(a).add(b.multiply(xp.square().invert()));
ECFieldElement z = solveQuadraticEquation(beta);
if (z == null)
{
throw new IllegalArgumentException("Invalid point compression");
}
if (z.testBitZero() != (yTilde == 1))
{
z = z.addOne();
}
yp = xp.multiply(z);
switch (this.getCoordinateSystem())
{
case COORD_LAMBDA_AFFINE:
case COORD_LAMBDA_PROJECTIVE:
{
yp = yp.divide(xp).add(xp);
break;
}
default:
{
break;
}
}
}
return new ECPoint.F2m(this, xp, yp, true);
}
/**
* Solves a quadratic equation z2 + z = beta
(X9.62
* D.1.6) The other solution is z + 1
.
*
* @param beta
* The value to solve the quadratic equation for.
* @return the solution for z2 + z = beta
or
* null
if no solution exists.
*/
private ECFieldElement solveQuadraticEquation(ECFieldElement beta)
{
if (beta.isZero())
{
return beta;
}
ECFieldElement zeroElement = fromBigInteger(ECConstants.ZERO);
ECFieldElement z = null;
ECFieldElement gamma = null;
Random rand = new Random();
do
{
ECFieldElement t = fromBigInteger(new BigInteger(m, rand));
z = zeroElement;
ECFieldElement w = beta;
for (int i = 1; i <= m - 1; i++)
{
ECFieldElement w2 = w.square();
z = z.square().add(w2.multiply(t));
w = w2.add(beta);
}
if (!w.isZero())
{
return null;
}
gamma = z.square().add(z);
}
while (gamma.isZero());
return z;
}
public boolean equals(
Object anObject)
{
if (anObject == this)
{
return true;
}
if (!(anObject instanceof ECCurve.F2m))
{
return false;
}
ECCurve.F2m other = (ECCurve.F2m)anObject;
return (this.m == other.m) && (this.k1 == other.k1)
&& (this.k2 == other.k2) && (this.k3 == other.k3)
&& a.equals(other.a) && b.equals(other.b);
}
public int hashCode()
{
return this.a.hashCode() ^ this.b.hashCode() ^ m ^ k1 ^ k2 ^ k3;
}
public int getM()
{
return m;
}
/**
* Return true if curve uses a Trinomial basis.
*
* @return true if curve Trinomial, false otherwise.
*/
public boolean isTrinomial()
{
return k2 == 0 && k3 == 0;
}
public int getK1()
{
return k1;
}
public int getK2()
{
return k2;
}
public int getK3()
{
return k3;
}
public BigInteger getN()
{
return n;
}
public BigInteger getH()
{
return h;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy