org.bouncycastle.crypto.generators.ECKeyPairGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.generators;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
import org.bouncycastle.crypto.KeyGenerationParameters;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECKeyGenerationParameters;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.FixedPointCombMultiplier;
import org.bouncycastle.math.ec.WNafUtil;
public class ECKeyPairGenerator
implements AsymmetricCipherKeyPairGenerator, ECConstants
{
ECDomainParameters params;
SecureRandom random;
public void init(
KeyGenerationParameters param)
{
ECKeyGenerationParameters ecP = (ECKeyGenerationParameters)param;
this.random = ecP.getRandom();
this.params = ecP.getDomainParameters();
if (this.random == null)
{
this.random = new SecureRandom();
}
}
/**
* Given the domain parameters this routine generates an EC key
* pair in accordance with X9.62 section 5.2.1 pages 26, 27.
*/
public AsymmetricCipherKeyPair generateKeyPair()
{
BigInteger n = params.getN();
int nBitLength = n.bitLength();
int minWeight = nBitLength >>> 2;
BigInteger d;
for (;;)
{
d = new BigInteger(nBitLength, random);
if (d.compareTo(TWO) < 0 || (d.compareTo(n) >= 0))
{
continue;
}
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtil.getNafWeight(d) < minWeight)
{
continue;
}
break;
}
ECPoint Q = createBasePointMultiplier().multiply(params.getG(), d);
return new AsymmetricCipherKeyPair(
new ECPublicKeyParameters(Q, params),
new ECPrivateKeyParameters(d, params));
}
protected ECMultiplier createBasePointMultiplier()
{
return new FixedPointCombMultiplier();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy