org.bouncycastle.math.ec.custom.sec.SecT163K1Curve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import java.util.Random;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECCurve.AbstractF2m;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.WTauNafMultiplier;
import org.bouncycastle.util.encoders.Hex;
public class SecT163K1Curve extends AbstractF2m
{
private static final int SecT163K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
protected SecT163K1Point infinity;
public SecT163K1Curve()
{
super(163, 3, 6, 7);
this.infinity = new SecT163K1Point(this, null, null);
this.a = fromBigInteger(BigInteger.valueOf(1));
this.b = this.a;
this.order = new BigInteger(1, Hex.decode("04000000000000000000020108A2E0CC0D99F8A5EF"));
this.cofactor = BigInteger.valueOf(2);
this.coord = SecT163K1_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new SecT163K1Curve();
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_LAMBDA_PROJECTIVE:
return true;
default:
return false;
}
}
protected ECMultiplier createDefaultMultiplier()
{
return new WTauNafMultiplier();
}
public int getFieldSize()
{
return 163;
}
public ECFieldElement fromBigInteger(BigInteger x)
{
return new SecT163FieldElement(x);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, boolean withCompression)
{
return new SecT163K1Point(this, x, y, withCompression);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, boolean withCompression)
{
return new SecT163K1Point(this, x, y, zs, withCompression);
}
public ECPoint getInfinity()
{
return infinity;
}
public boolean isKoblitz()
{
return true;
}
/**
* Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
*
* @param yTilde
* ~yp, an indication bit for the decompression of yp.
* @param X1
* The field element xp.
* @return the decompressed point.
*/
protected ECPoint decompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement x = fromBigInteger(X1), y = null;
if (x.isZero())
{
y = b.sqrt();
}
else
{
ECFieldElement beta = x.square().invert().multiply(b).add(a).add(x);
ECFieldElement z = solveQuadraticEquation(beta);
if (z != null)
{
if (z.testBitZero() != (yTilde == 1))
{
z = z.addOne();
}
switch (this.getCoordinateSystem())
{
case COORD_LAMBDA_AFFINE:
case COORD_LAMBDA_PROJECTIVE:
{
y = z.add(x);
break;
}
default:
{
y = z.multiply(x);
break;
}
}
}
}
if (y == null)
{
throw new IllegalArgumentException("Invalid point compression");
}
return this.createRawPoint(x, y, true);
}
/**
* Solves a quadratic equation z2 + z = beta
(X9.62
* D.1.6) The other solution is z + 1
.
*
* @param beta
* The value to solve the quadratic equation for.
* @return the solution for z2 + z = beta
or
* null
if no solution exists.
*/
private ECFieldElement solveQuadraticEquation(ECFieldElement beta)
{
if (beta.isZero())
{
return beta;
}
ECFieldElement zeroElement = fromBigInteger(ECConstants.ZERO);
ECFieldElement z = null;
ECFieldElement gamma = null;
Random rand = new Random();
do
{
ECFieldElement t = fromBigInteger(new BigInteger(163, rand));
z = zeroElement;
ECFieldElement w = beta;
for (int i = 1; i < 163; i++)
{
ECFieldElement w2 = w.square();
z = z.square().add(w2.multiply(t));
w = w2.add(beta);
}
if (!w.isZero())
{
return null;
}
gamma = z.square().add(z);
}
while (gamma.isZero());
return z;
}
public int getM()
{
return 163;
}
public boolean isTrinomial()
{
return false;
}
public int getK1()
{
return 3;
}
public int getK2()
{
return 6;
}
public int getK3()
{
return 7;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy