org.bouncycastle.math.raw.Nat128 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.math.raw;
import java.math.BigInteger;
import org.bouncycastle.util.Pack;
public abstract class Nat128
{
private static final long M = 0xFFFFFFFFL;
public static int add(int[] x, int[] y, int[] z)
{
long c = 0;
c += (x[0] & M) + (y[0] & M);
z[0] = (int)c;
c >>>= 32;
c += (x[1] & M) + (y[1] & M);
z[1] = (int)c;
c >>>= 32;
c += (x[2] & M) + (y[2] & M);
z[2] = (int)c;
c >>>= 32;
c += (x[3] & M) + (y[3] & M);
z[3] = (int)c;
c >>>= 32;
return (int)c;
}
public static int addBothTo(int[] x, int[] y, int[] z)
{
long c = 0;
c += (x[0] & M) + (y[0] & M) + (z[0] & M);
z[0] = (int)c;
c >>>= 32;
c += (x[1] & M) + (y[1] & M) + (z[1] & M);
z[1] = (int)c;
c >>>= 32;
c += (x[2] & M) + (y[2] & M) + (z[2] & M);
z[2] = (int)c;
c >>>= 32;
c += (x[3] & M) + (y[3] & M) + (z[3] & M);
z[3] = (int)c;
c >>>= 32;
return (int)c;
}
public static int addTo(int[] x, int[] z)
{
long c = 0;
c += (x[0] & M) + (z[0] & M);
z[0] = (int)c;
c >>>= 32;
c += (x[1] & M) + (z[1] & M);
z[1] = (int)c;
c >>>= 32;
c += (x[2] & M) + (z[2] & M);
z[2] = (int)c;
c >>>= 32;
c += (x[3] & M) + (z[3] & M);
z[3] = (int)c;
c >>>= 32;
return (int)c;
}
public static int addTo(int[] x, int xOff, int[] z, int zOff, int cIn)
{
long c = cIn & M;
c += (x[xOff + 0] & M) + (z[zOff + 0] & M);
z[zOff + 0] = (int)c;
c >>>= 32;
c += (x[xOff + 1] & M) + (z[zOff + 1] & M);
z[zOff + 1] = (int)c;
c >>>= 32;
c += (x[xOff + 2] & M) + (z[zOff + 2] & M);
z[zOff + 2] = (int)c;
c >>>= 32;
c += (x[xOff + 3] & M) + (z[zOff + 3] & M);
z[zOff + 3] = (int)c;
c >>>= 32;
return (int)c;
}
public static int addToEachOther(int[] u, int uOff, int[] v, int vOff)
{
long c = 0;
c += (u[uOff + 0] & M) + (v[vOff + 0] & M);
u[uOff + 0] = (int)c;
v[vOff + 0] = (int)c;
c >>>= 32;
c += (u[uOff + 1] & M) + (v[vOff + 1] & M);
u[uOff + 1] = (int)c;
v[vOff + 1] = (int)c;
c >>>= 32;
c += (u[uOff + 2] & M) + (v[vOff + 2] & M);
u[uOff + 2] = (int)c;
v[vOff + 2] = (int)c;
c >>>= 32;
c += (u[uOff + 3] & M) + (v[vOff + 3] & M);
u[uOff + 3] = (int)c;
v[vOff + 3] = (int)c;
c >>>= 32;
return (int)c;
}
public static void copy(int[] x, int[] z)
{
z[0] = x[0];
z[1] = x[1];
z[2] = x[2];
z[3] = x[3];
}
public static void copy64(long[] x, long[] z)
{
z[0] = x[0];
z[1] = x[1];
}
public static int[] create()
{
return new int[4];
}
public static long[] create64()
{
return new long[2];
}
public static int[] createExt()
{
return new int[8];
}
public static long[] createExt64()
{
return new long[4];
}
public static boolean diff(int[] x, int xOff, int[] y, int yOff, int[] z, int zOff)
{
boolean pos = gte(x, xOff, y, yOff);
if (pos)
{
sub(x, xOff, y, yOff, z, zOff);
}
else
{
sub(y, yOff, x, xOff, z, zOff);
}
return pos;
}
public static boolean eq(int[] x, int[] y)
{
for (int i = 3; i >= 0; --i)
{
if (x[i] != y[i])
{
return false;
}
}
return true;
}
public static boolean eq64(long[] x, long[] y)
{
for (int i = 1; i >= 0; --i)
{
if (x[i] != y[i])
{
return false;
}
}
return true;
}
public static int[] fromBigInteger(BigInteger x)
{
if (x.signum() < 0 || x.bitLength() > 128)
{
throw new IllegalArgumentException();
}
int[] z = create();
int i = 0;
while (x.signum() != 0)
{
z[i++] = x.intValue();
x = x.shiftRight(32);
}
return z;
}
public static long[] fromBigInteger64(BigInteger x)
{
if (x.signum() < 0 || x.bitLength() > 128)
{
throw new IllegalArgumentException();
}
long[] z = create64();
int i = 0;
while (x.signum() != 0)
{
z[i++] = x.longValue();
x = x.shiftRight(64);
}
return z;
}
public static int getBit(int[] x, int bit)
{
if (bit == 0)
{
return x[0] & 1;
}
int w = bit >> 5;
if (w < 0 || w >= 4)
{
return 0;
}
int b = bit & 31;
return (x[w] >>> b) & 1;
}
public static boolean gte(int[] x, int[] y)
{
for (int i = 3; i >= 0; --i)
{
int x_i = x[i] ^ Integer.MIN_VALUE;
int y_i = y[i] ^ Integer.MIN_VALUE;
if (x_i < y_i)
return false;
if (x_i > y_i)
return true;
}
return true;
}
public static boolean gte(int[] x, int xOff, int[] y, int yOff)
{
for (int i = 3; i >= 0; --i)
{
int x_i = x[xOff + i] ^ Integer.MIN_VALUE;
int y_i = y[yOff + i] ^ Integer.MIN_VALUE;
if (x_i < y_i)
return false;
if (x_i > y_i)
return true;
}
return true;
}
public static boolean isOne(int[] x)
{
if (x[0] != 1)
{
return false;
}
for (int i = 1; i < 4; ++i)
{
if (x[i] != 0)
{
return false;
}
}
return true;
}
public static boolean isOne64(long[] x)
{
if (x[0] != 1L)
{
return false;
}
for (int i = 1; i < 2; ++i)
{
if (x[i] != 0L)
{
return false;
}
}
return true;
}
public static boolean isZero(int[] x)
{
for (int i = 0; i < 4; ++i)
{
if (x[i] != 0)
{
return false;
}
}
return true;
}
public static boolean isZero64(long[] x)
{
for (int i = 0; i < 2; ++i)
{
if (x[i] != 0L)
{
return false;
}
}
return true;
}
public static void mul(int[] x, int[] y, int[] zz)
{
long y_0 = y[0] & M;
long y_1 = y[1] & M;
long y_2 = y[2] & M;
long y_3 = y[3] & M;
{
long c = 0, x_0 = x[0] & M;
c += x_0 * y_0;
zz[0] = (int)c;
c >>>= 32;
c += x_0 * y_1;
zz[1] = (int)c;
c >>>= 32;
c += x_0 * y_2;
zz[2] = (int)c;
c >>>= 32;
c += x_0 * y_3;
zz[3] = (int)c;
c >>>= 32;
zz[4] = (int)c;
}
for (int i = 1; i < 4; ++i)
{
long c = 0, x_i = x[i] & M;
c += x_i * y_0 + (zz[i + 0] & M);
zz[i + 0] = (int)c;
c >>>= 32;
c += x_i * y_1 + (zz[i + 1] & M);
zz[i + 1] = (int)c;
c >>>= 32;
c += x_i * y_2 + (zz[i + 2] & M);
zz[i + 2] = (int)c;
c >>>= 32;
c += x_i * y_3 + (zz[i + 3] & M);
zz[i + 3] = (int)c;
c >>>= 32;
zz[i + 4] = (int)c;
}
}
public static void mul(int[] x, int xOff, int[] y, int yOff, int[] zz, int zzOff)
{
long y_0 = y[yOff + 0] & M;
long y_1 = y[yOff + 1] & M;
long y_2 = y[yOff + 2] & M;
long y_3 = y[yOff + 3] & M;
{
long c = 0, x_0 = x[xOff + 0] & M;
c += x_0 * y_0;
zz[zzOff + 0] = (int)c;
c >>>= 32;
c += x_0 * y_1;
zz[zzOff + 1] = (int)c;
c >>>= 32;
c += x_0 * y_2;
zz[zzOff + 2] = (int)c;
c >>>= 32;
c += x_0 * y_3;
zz[zzOff + 3] = (int)c;
c >>>= 32;
zz[zzOff + 4] = (int)c;
}
for (int i = 1; i < 4; ++i)
{
++zzOff;
long c = 0, x_i = x[xOff + i] & M;
c += x_i * y_0 + (zz[zzOff + 0] & M);
zz[zzOff + 0] = (int)c;
c >>>= 32;
c += x_i * y_1 + (zz[zzOff + 1] & M);
zz[zzOff + 1] = (int)c;
c >>>= 32;
c += x_i * y_2 + (zz[zzOff + 2] & M);
zz[zzOff + 2] = (int)c;
c >>>= 32;
c += x_i * y_3 + (zz[zzOff + 3] & M);
zz[zzOff + 3] = (int)c;
c >>>= 32;
zz[zzOff + 4] = (int)c;
}
}
public static int mulAddTo(int[] x, int[] y, int[] zz)
{
long y_0 = y[0] & M;
long y_1 = y[1] & M;
long y_2 = y[2] & M;
long y_3 = y[3] & M;
long zc = 0;
for (int i = 0; i < 4; ++i)
{
long c = 0, x_i = x[i] & M;
c += x_i * y_0 + (zz[i + 0] & M);
zz[i + 0] = (int)c;
c >>>= 32;
c += x_i * y_1 + (zz[i + 1] & M);
zz[i + 1] = (int)c;
c >>>= 32;
c += x_i * y_2 + (zz[i + 2] & M);
zz[i + 2] = (int)c;
c >>>= 32;
c += x_i * y_3 + (zz[i + 3] & M);
zz[i + 3] = (int)c;
c >>>= 32;
c += zc + (zz[i + 4] & M);
zz[i + 4] = (int)c;
zc = c >>> 32;
}
return (int)zc;
}
public static int mulAddTo(int[] x, int xOff, int[] y, int yOff, int[] zz, int zzOff)
{
long y_0 = y[yOff + 0] & M;
long y_1 = y[yOff + 1] & M;
long y_2 = y[yOff + 2] & M;
long y_3 = y[yOff + 3] & M;
long zc = 0;
for (int i = 0; i < 4; ++i)
{
long c = 0, x_i = x[xOff + i] & M;
c += x_i * y_0 + (zz[zzOff + 0] & M);
zz[zzOff + 0] = (int)c;
c >>>= 32;
c += x_i * y_1 + (zz[zzOff + 1] & M);
zz[zzOff + 1] = (int)c;
c >>>= 32;
c += x_i * y_2 + (zz[zzOff + 2] & M);
zz[zzOff + 2] = (int)c;
c >>>= 32;
c += x_i * y_3 + (zz[zzOff + 3] & M);
zz[zzOff + 3] = (int)c;
c >>>= 32;
c += zc + (zz[zzOff + 4] & M);
zz[zzOff + 4] = (int)c;
zc = c >>> 32;
++zzOff;
}
return (int)zc;
}
public static long mul33Add(int w, int[] x, int xOff, int[] y, int yOff, int[] z, int zOff)
{
// assert w >>> 31 == 0;
long c = 0, wVal = w & M;
long x0 = x[xOff + 0] & M;
c += wVal * x0 + (y[yOff + 0] & M);
z[zOff + 0] = (int)c;
c >>>= 32;
long x1 = x[xOff + 1] & M;
c += wVal * x1 + x0 + (y[yOff + 1] & M);
z[zOff + 1] = (int)c;
c >>>= 32;
long x2 = x[xOff + 2] & M;
c += wVal * x2 + x1 + (y[yOff + 2] & M);
z[zOff + 2] = (int)c;
c >>>= 32;
long x3 = x[xOff + 3] & M;
c += wVal * x3 + x2 + (y[yOff + 3] & M);
z[zOff + 3] = (int)c;
c >>>= 32;
c += x3;
return c;
}
public static int mulWordAddExt(int x, int[] yy, int yyOff, int[] zz, int zzOff)
{
// assert yyOff <= 4;
// assert zzOff <= 4;
long c = 0, xVal = x & M;
c += xVal * (yy[yyOff + 0] & M) + (zz[zzOff + 0] & M);
zz[zzOff + 0] = (int)c;
c >>>= 32;
c += xVal * (yy[yyOff + 1] & M) + (zz[zzOff + 1] & M);
zz[zzOff + 1] = (int)c;
c >>>= 32;
c += xVal * (yy[yyOff + 2] & M) + (zz[zzOff + 2] & M);
zz[zzOff + 2] = (int)c;
c >>>= 32;
c += xVal * (yy[yyOff + 3] & M) + (zz[zzOff + 3] & M);
zz[zzOff + 3] = (int)c;
c >>>= 32;
return (int)c;
}
public static int mul33DWordAdd(int x, long y, int[] z, int zOff)
{
// assert x >>> 31 == 0;
// assert zOff <= 0;
long c = 0, xVal = x & M;
long y00 = y & M;
c += xVal * y00 + (z[zOff + 0] & M);
z[zOff + 0] = (int)c;
c >>>= 32;
long y01 = y >>> 32;
c += xVal * y01 + y00 + (z[zOff + 1] & M);
z[zOff + 1] = (int)c;
c >>>= 32;
c += y01 + (z[zOff + 2] & M);
z[zOff + 2] = (int)c;
c >>>= 32;
c += (z[zOff + 3] & M);
z[zOff + 3] = (int)c;
c >>>= 32;
return (int)c;
}
public static int mul33WordAdd(int x, int y, int[] z, int zOff)
{
// assert x >>> 31 == 0;
// assert zOff <= 1;
long c = 0, xVal = x & M, yVal = y & M;
c += yVal * xVal + (z[zOff + 0] & M);
z[zOff + 0] = (int)c;
c >>>= 32;
c += yVal + (z[zOff + 1] & M);
z[zOff + 1] = (int)c;
c >>>= 32;
c += (z[zOff + 2] & M);
z[zOff + 2] = (int)c;
c >>>= 32;
return c == 0 ? 0 : Nat.incAt(4, z, zOff, 3);
}
public static int mulWordDwordAdd(int x, long y, int[] z, int zOff)
{
// assert zOff <= 1;
long c = 0, xVal = x & M;
c += xVal * (y & M) + (z[zOff + 0] & M);
z[zOff + 0] = (int)c;
c >>>= 32;
c += xVal * (y >>> 32) + (z[zOff + 1] & M);
z[zOff + 1] = (int)c;
c >>>= 32;
c += (z[zOff + 2] & M);
z[zOff + 2] = (int)c;
c >>>= 32;
return c == 0 ? 0 : Nat.incAt(4, z, zOff, 3);
}
public static int mulWordsAdd(int x, int y, int[] z, int zOff)
{
// assert zOff <= 2;
long c = 0, xVal = x & M, yVal = y & M;
c += yVal * xVal + (z[zOff + 0] & M);
z[zOff + 0] = (int)c;
c >>>= 32;
c += (z[zOff + 1] & M);
z[zOff + 1] = (int)c;
c >>>= 32;
return c == 0 ? 0 : Nat.incAt(4, z, zOff, 2);
}
public static int mulWord(int x, int[] y, int[] z, int zOff)
{
long c = 0, xVal = x & M;
int i = 0;
do
{
c += xVal * (y[i] & M);
z[zOff + i] = (int)c;
c >>>= 32;
}
while (++i < 4);
return (int)c;
}
public static void square(int[] x, int[] zz)
{
long x_0 = x[0] & M;
long zz_1;
int c = 0, w;
{
int i = 3, j = 8;
do
{
long xVal = (x[i--] & M);
long p = xVal * xVal;
zz[--j] = (c << 31) | (int)(p >>> 33);
zz[--j] = (int)(p >>> 1);
c = (int)p;
}
while (i > 0);
{
long p = x_0 * x_0;
zz_1 = ((c << 31) & M) | (p >>> 33);
zz[0] = (int)p;
c = (int)(p >>> 32) & 1;
}
}
long x_1 = x[1] & M;
long zz_2 = zz[2] & M;
{
zz_1 += x_1 * x_0;
w = (int)zz_1;
zz[1] = (w << 1) | c;
c = w >>> 31;
zz_2 += zz_1 >>> 32;
}
long x_2 = x[2] & M;
long zz_3 = zz[3] & M;
long zz_4 = zz[4] & M;
{
zz_2 += x_2 * x_0;
w = (int)zz_2;
zz[2] = (w << 1) | c;
c = w >>> 31;
zz_3 += (zz_2 >>> 32) + x_2 * x_1;
zz_4 += zz_3 >>> 32;
zz_3 &= M;
}
long x_3 = x[3] & M;
long zz_5 = zz[5] & M;
long zz_6 = zz[6] & M;
{
zz_3 += x_3 * x_0;
w = (int)zz_3;
zz[3] = (w << 1) | c;
c = w >>> 31;
zz_4 += (zz_3 >>> 32) + x_3 * x_1;
zz_5 += (zz_4 >>> 32) + x_3 * x_2;
zz_6 += zz_5 >>> 32;
zz_5 &= M;
}
w = (int)zz_4;
zz[4] = (w << 1) | c;
c = w >>> 31;
w = (int)zz_5;
zz[5] = (w << 1) | c;
c = w >>> 31;
w = (int)zz_6;
zz[6] = (w << 1) | c;
c = w >>> 31;
w = zz[7] + (int)(zz_6 >> 32);
zz[7] = (w << 1) | c;
}
public static void square(int[] x, int xOff, int[] zz, int zzOff)
{
long x_0 = x[xOff + 0] & M;
long zz_1;
int c = 0, w;
{
int i = 3, j = 8;
do
{
long xVal = (x[xOff + i--] & M);
long p = xVal * xVal;
zz[zzOff + --j] = (c << 31) | (int)(p >>> 33);
zz[zzOff + --j] = (int)(p >>> 1);
c = (int)p;
}
while (i > 0);
{
long p = x_0 * x_0;
zz_1 = ((c << 31) & M) | (p >>> 33);
zz[zzOff + 0] = (int)p;
c = (int)(p >>> 32) & 1;
}
}
long x_1 = x[xOff + 1] & M;
long zz_2 = zz[zzOff + 2] & M;
{
zz_1 += x_1 * x_0;
w = (int)zz_1;
zz[zzOff + 1] = (w << 1) | c;
c = w >>> 31;
zz_2 += zz_1 >>> 32;
}
long x_2 = x[xOff + 2] & M;
long zz_3 = zz[zzOff + 3] & M;
long zz_4 = zz[zzOff + 4] & M;
{
zz_2 += x_2 * x_0;
w = (int)zz_2;
zz[zzOff + 2] = (w << 1) | c;
c = w >>> 31;
zz_3 += (zz_2 >>> 32) + x_2 * x_1;
zz_4 += zz_3 >>> 32;
zz_3 &= M;
}
long x_3 = x[xOff + 3] & M;
long zz_5 = zz[zzOff + 5] & M;
long zz_6 = zz[zzOff + 6] & M;
{
zz_3 += x_3 * x_0;
w = (int)zz_3;
zz[zzOff + 3] = (w << 1) | c;
c = w >>> 31;
zz_4 += (zz_3 >>> 32) + x_3 * x_1;
zz_5 += (zz_4 >>> 32) + x_3 * x_2;
zz_6 += zz_5 >>> 32;
}
w = (int)zz_4;
zz[zzOff + 4] = (w << 1) | c;
c = w >>> 31;
w = (int)zz_5;
zz[zzOff + 5] = (w << 1) | c;
c = w >>> 31;
w = (int)zz_6;
zz[zzOff + 6] = (w << 1) | c;
c = w >>> 31;
w = zz[zzOff + 7] + (int)(zz_6 >> 32);
zz[zzOff + 7] = (w << 1) | c;
}
public static int sub(int[] x, int[] y, int[] z)
{
long c = 0;
c += (x[0] & M) - (y[0] & M);
z[0] = (int)c;
c >>= 32;
c += (x[1] & M) - (y[1] & M);
z[1] = (int)c;
c >>= 32;
c += (x[2] & M) - (y[2] & M);
z[2] = (int)c;
c >>= 32;
c += (x[3] & M) - (y[3] & M);
z[3] = (int)c;
c >>= 32;
return (int)c;
}
public static int sub(int[] x, int xOff, int[] y, int yOff, int[] z, int zOff)
{
long c = 0;
c += (x[xOff + 0] & M) - (y[yOff + 0] & M);
z[zOff + 0] = (int)c;
c >>= 32;
c += (x[xOff + 1] & M) - (y[yOff + 1] & M);
z[zOff + 1] = (int)c;
c >>= 32;
c += (x[xOff + 2] & M) - (y[yOff + 2] & M);
z[zOff + 2] = (int)c;
c >>= 32;
c += (x[xOff + 3] & M) - (y[yOff + 3] & M);
z[zOff + 3] = (int)c;
c >>= 32;
return (int)c;
}
public static int subBothFrom(int[] x, int[] y, int[] z)
{
long c = 0;
c += (z[0] & M) - (x[0] & M) - (y[0] & M);
z[0] = (int)c;
c >>= 32;
c += (z[1] & M) - (x[1] & M) - (y[1] & M);
z[1] = (int)c;
c >>= 32;
c += (z[2] & M) - (x[2] & M) - (y[2] & M);
z[2] = (int)c;
c >>= 32;
c += (z[3] & M) - (x[3] & M) - (y[3] & M);
z[3] = (int)c;
c >>= 32;
return (int)c;
}
public static int subFrom(int[] x, int[] z)
{
long c = 0;
c += (z[0] & M) - (x[0] & M);
z[0] = (int)c;
c >>= 32;
c += (z[1] & M) - (x[1] & M);
z[1] = (int)c;
c >>= 32;
c += (z[2] & M) - (x[2] & M);
z[2] = (int)c;
c >>= 32;
c += (z[3] & M) - (x[3] & M);
z[3] = (int)c;
c >>= 32;
return (int)c;
}
public static int subFrom(int[] x, int xOff, int[] z, int zOff)
{
long c = 0;
c += (z[zOff + 0] & M) - (x[xOff + 0] & M);
z[zOff + 0] = (int)c;
c >>= 32;
c += (z[zOff + 1] & M) - (x[xOff + 1] & M);
z[zOff + 1] = (int)c;
c >>= 32;
c += (z[zOff + 2] & M) - (x[xOff + 2] & M);
z[zOff + 2] = (int)c;
c >>= 32;
c += (z[zOff + 3] & M) - (x[xOff + 3] & M);
z[zOff + 3] = (int)c;
c >>= 32;
return (int)c;
}
public static BigInteger toBigInteger(int[] x)
{
byte[] bs = new byte[16];
for (int i = 0; i < 4; ++i)
{
int x_i = x[i];
if (x_i != 0)
{
Pack.intToBigEndian(x_i, bs, (3 - i) << 2);
}
}
return new BigInteger(1, bs);
}
public static BigInteger toBigInteger64(long[] x)
{
byte[] bs = new byte[16];
for (int i = 0; i < 2; ++i)
{
long x_i = x[i];
if (x_i != 0L)
{
Pack.longToBigEndian(x_i, bs, (1 - i) << 3);
}
}
return new BigInteger(1, bs);
}
public static void zero(int[] z)
{
z[0] = 0;
z[1] = 0;
z[2] = 0;
z[3] = 0;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy