org.bouncycastle.pqc.jcajce.provider.mceliece.BCMcElieceCCA2PrivateKey Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.pqc.jcajce.provider.mceliece;
import java.io.IOException;
import java.security.PrivateKey;
import org.bouncycastle.asn1.pkcs.PrivateKeyInfo;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
import org.bouncycastle.crypto.params.AsymmetricKeyParameter;
import org.bouncycastle.pqc.asn1.McElieceCCA2PrivateKey;
import org.bouncycastle.pqc.asn1.PQCObjectIdentifiers;
import org.bouncycastle.pqc.crypto.mceliece.McElieceCCA2KeyPairGenerator;
import org.bouncycastle.pqc.crypto.mceliece.McElieceCCA2PrivateKeyParameters;
import org.bouncycastle.pqc.math.linearalgebra.GF2Matrix;
import org.bouncycastle.pqc.math.linearalgebra.GF2mField;
import org.bouncycastle.pqc.math.linearalgebra.Permutation;
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM;
/**
* This class implements a McEliece CCA2 private key and is usually instantiated
* by the {@link McElieceCCA2KeyPairGenerator} or {@link McElieceCCA2KeyFactorySpi}.
*
* @see McElieceCCA2KeyPairGenerator
*/
public class BCMcElieceCCA2PrivateKey
implements PrivateKey
{
private static final long serialVersionUID = 1L;
private McElieceCCA2PrivateKeyParameters params;
public BCMcElieceCCA2PrivateKey(McElieceCCA2PrivateKeyParameters params)
{
this.params = params;
}
/**
* Return the name of the algorithm.
*
* @return "McEliece-CCA2"
*/
public String getAlgorithm()
{
return "McEliece-CCA2";
}
/**
* @return the length of the code
*/
public int getN()
{
return params.getN();
}
/**
* @return the dimension of the code
*/
public int getK()
{
return params.getK();
}
/**
* @return the degree of the Goppa polynomial (error correcting capability)
*/
public int getT()
{
return params.getGoppaPoly().getDegree();
}
/**
* @return the finite field
*/
public GF2mField getField()
{
return params.getField();
}
/**
* @return the irreducible Goppa polynomial
*/
public PolynomialGF2mSmallM getGoppaPoly()
{
return params.getGoppaPoly();
}
/**
* @return the permutation vector
*/
public Permutation getP()
{
return params.getP();
}
/**
* @return the canonical check matrix
*/
public GF2Matrix getH()
{
return params.getH();
}
/**
* @return the matrix used to compute square roots in (GF(2^m))^t
*/
public PolynomialGF2mSmallM[] getQInv()
{
return params.getQInv();
}
/**
* @return a human readable form of the key
*/
public String toString()
{
String result = "";
result += " extension degree of the field : " + getN() + "\n";
result += " dimension of the code : " + getK() + "\n";
result += " irreducible Goppa polynomial : " + getGoppaPoly() + "\n";
return result;
}
/**
* Compare this key with another object.
*
* @param other the other object
* @return the result of the comparison
*/
public boolean equals(Object other)
{
if (other == null || !(other instanceof BCMcElieceCCA2PrivateKey))
{
return false;
}
BCMcElieceCCA2PrivateKey otherKey = (BCMcElieceCCA2PrivateKey)other;
return (getN() == otherKey.getN()) && (getK() == otherKey.getK())
&& getField().equals(otherKey.getField())
&& getGoppaPoly().equals(otherKey.getGoppaPoly()) && getP().equals(otherKey.getP())
&& getH().equals(otherKey.getH());
}
/**
* @return the hash code of this key
*/
public int hashCode()
{
int code = params.getK();
code = code * 37 + params.getN();
code = code * 37 + params.getField().hashCode();
code = code * 37 + params.getGoppaPoly().hashCode();
code = code * 37 + params.getP().hashCode();
return code * 37 + params.getH().hashCode();
}
/**
* Return the keyData to encode in the SubjectPublicKeyInfo structure.
*
* The ASN.1 definition of the key structure is
*
* McEliecePrivateKey ::= SEQUENCE {
* m INTEGER -- extension degree of the field
* k INTEGER -- dimension of the code
* field OCTET STRING -- field polynomial
* goppaPoly OCTET STRING -- irreducible Goppa polynomial
* p OCTET STRING -- permutation vector
* matrixH OCTET STRING -- canonical check matrix
* sqRootMatrix SEQUENCE OF OCTET STRING -- square root matrix
* }
*
*
*
* @return the keyData to encode in the SubjectPublicKeyInfo structure
*/
public byte[] getEncoded()
{
PrivateKeyInfo pki;
try
{
McElieceCCA2PrivateKey privateKey = new McElieceCCA2PrivateKey(getN(), getK(), getField(), getGoppaPoly(), getP(), Utils.getDigAlgId(params.getDigest()));
AlgorithmIdentifier algorithmIdentifier = new AlgorithmIdentifier(PQCObjectIdentifiers.mcElieceCca2);
pki = new PrivateKeyInfo(algorithmIdentifier, privateKey);
return pki.getEncoded();
}
catch (IOException e)
{
return null;
}
}
public String getFormat()
{
return "PKCS#8";
}
AsymmetricKeyParameter getKeyParams()
{
return params;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy