org.bouncycastle.math.ec.custom.sec.SecP128R1Field Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat128;
import org.bouncycastle.math.raw.Nat256;
public class SecP128R1Field
{
private static final long M = 0xFFFFFFFFL;
// 2^128 - 2^97 - 1
static final int[] P = new int[] { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFD };
static final int[] PExt = new int[] { 0x00000001, 0x00000000, 0x00000000, 0x00000004, 0xFFFFFFFE,
0xFFFFFFFF, 0x00000003, 0xFFFFFFFC };
private static final int[] PExtInv = new int[]{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFB,
0x00000001, 0x00000000, 0xFFFFFFFC, 0x00000003 };
private static final int P3 = 0xFFFFFFFD;
private static final int PExt7 = 0xFFFFFFFC;
public static void add(int[] x, int[] y, int[] z)
{
int c = Nat128.add(x, y, z);
if (c != 0 || (z[3] == P3 && Nat128.gte(z, P)))
{
addPInvTo(z);
}
}
public static void addExt(int[] xx, int[] yy, int[] zz)
{
int c = Nat256.add(xx, yy, zz);
if (c != 0 || (zz[7] == PExt7 && Nat256.gte(zz, PExt)))
{
Nat.addTo(PExtInv.length, PExtInv, zz);
}
}
public static void addOne(int[] x, int[] z)
{
int c = Nat.inc(4, x, z);
if (c != 0 || (z[3] == P3 && Nat128.gte(z, P)))
{
addPInvTo(z);
}
}
public static int[] fromBigInteger(BigInteger x)
{
int[] z = Nat128.fromBigInteger(x);
if (z[3] == P3 && Nat128.gte(z, P))
{
Nat128.subFrom(P, z);
}
return z;
}
public static void half(int[] x, int[] z)
{
if ((x[0] & 1) == 0)
{
Nat.shiftDownBit(4, x, 0, z);
}
else
{
int c = Nat128.add(x, P, z);
Nat.shiftDownBit(4, z, c);
}
}
public static void multiply(int[] x, int[] y, int[] z)
{
int[] tt = Nat128.createExt();
Nat128.mul(x, y, tt);
reduce(tt, z);
}
public static void multiplyAddToExt(int[] x, int[] y, int[] zz)
{
int c = Nat128.mulAddTo(x, y, zz);
if (c != 0 || (zz[7] == PExt7 && Nat256.gte(zz, PExt)))
{
Nat.addTo(PExtInv.length, PExtInv, zz);
}
}
public static void negate(int[] x, int[] z)
{
if (Nat128.isZero(x))
{
Nat128.zero(z);
}
else
{
Nat128.sub(P, x, z);
}
}
public static void reduce(int[] xx, int[] z)
{
long x0 = xx[0] & M, x1 = xx[1] & M, x2 = xx[2] & M, x3 = xx[3] & M;
long x4 = xx[4] & M, x5 = xx[5] & M, x6 = xx[6] & M, x7 = xx[7] & M;
x3 += x7; x6 += (x7 << 1);
x2 += x6; x5 += (x6 << 1);
x1 += x5; x4 += (x5 << 1);
x0 += x4; x3 += (x4 << 1);
z[0] = (int)x0; x1 += (x0 >>> 32);
z[1] = (int)x1; x2 += (x1 >>> 32);
z[2] = (int)x2; x3 += (x2 >>> 32);
z[3] = (int)x3;
reduce32((int)(x3 >>> 32), z);
}
public static void reduce32(int x, int[] z)
{
while (x != 0)
{
long c, x4 = x & M;
c = (z[0] & M) + x4;
z[0] = (int)c; c >>= 32;
if (c != 0)
{
c += (z[1] & M);
z[1] = (int)c; c >>= 32;
c += (z[2] & M);
z[2] = (int)c; c >>= 32;
}
c += (z[3] & M) + (x4 << 1);
z[3] = (int)c; c >>= 32;
// assert c >= 0 && c <= 2;
x = (int)c;
}
}
public static void square(int[] x, int[] z)
{
int[] tt = Nat128.createExt();
Nat128.square(x, tt);
reduce(tt, z);
}
public static void squareN(int[] x, int n, int[] z)
{
// assert n > 0;
int[] tt = Nat128.createExt();
Nat128.square(x, tt);
reduce(tt, z);
while (--n > 0)
{
Nat128.square(z, tt);
reduce(tt, z);
}
}
public static void subtract(int[] x, int[] y, int[] z)
{
int c = Nat128.sub(x, y, z);
if (c != 0)
{
subPInvFrom(z);
}
}
public static void subtractExt(int[] xx, int[] yy, int[] zz)
{
int c = Nat.sub(10, xx, yy, zz);
if (c != 0)
{
Nat.subFrom(PExtInv.length, PExtInv, zz);
}
}
public static void twice(int[] x, int[] z)
{
int c = Nat.shiftUpBit(4, x, 0, z);
if (c != 0 || (z[3] == P3 && Nat128.gte(z, P)))
{
addPInvTo(z);
}
}
private static void addPInvTo(int[] z)
{
long c = (z[0] & M) + 1;
z[0] = (int)c; c >>= 32;
if (c != 0)
{
c += (z[1] & M);
z[1] = (int)c; c >>= 32;
c += (z[2] & M);
z[2] = (int)c; c >>= 32;
}
c += (z[3] & M) + 2;
z[3] = (int)c;
}
private static void subPInvFrom(int[] z)
{
long c = (z[0] & M) - 1;
z[0] = (int)c; c >>= 32;
if (c != 0)
{
c += (z[1] & M);
z[1] = (int)c; c >>= 32;
c += (z[2] & M);
z[2] = (int)c; c >>= 32;
}
c += (z[3] & M) - 2;
z[3] = (int)c;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy