org.bouncycastle.crypto.generators.CramerShoupParametersGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.generators;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.crypto.digests.SHA256Digest;
import org.bouncycastle.crypto.params.CramerShoupParameters;
import org.bouncycastle.crypto.params.DHParameters;
import org.bouncycastle.util.BigIntegers;
public class CramerShoupParametersGenerator
{
private static final BigInteger ONE = BigInteger.valueOf(1);
private int size;
private int certainty;
private SecureRandom random;
/**
* Initialise the parameters generator.
*
* @param size bit length for the prime p
* @param certainty a measure of the uncertainty that the caller is willing to tolerate:
* the probability that the generated modulus is prime exceeds (1 - 1/2^certainty).
* The execution time of this method is proportional to the value of this parameter.
* @param random a source of randomness
*/
public void init(int size, int certainty, SecureRandom random)
{
this.size = size;
this.certainty = certainty;
this.random = random;
}
/**
* which generates the p and g values from the given parameters, returning
* the CramerShoupParameters object.
*
* Note: can take a while...
*
* @return a generated CramerShoupParameters object.
*/
public CramerShoupParameters generateParameters()
{
//
// find a safe prime p where p = 2*q + 1, where p and q are prime.
//
BigInteger[] safePrimes = ParametersHelper.generateSafePrimes(size, certainty, random);
// BigInteger p = safePrimes[0];
BigInteger q = safePrimes[1];
BigInteger g1 = ParametersHelper.selectGenerator(q, random);
BigInteger g2 = ParametersHelper.selectGenerator(q, random);
while (g1.equals(g2))
{
g2 = ParametersHelper.selectGenerator(q, random);
}
return new CramerShoupParameters(q, g1, g2, new SHA256Digest());
}
public CramerShoupParameters generateParameters(DHParameters dhParams)
{
BigInteger p = dhParams.getP();
BigInteger g1 = dhParams.getG();
// now we just need a second generator
BigInteger g2 = ParametersHelper.selectGenerator(p, random);
while (g1.equals(g2))
{
g2 = ParametersHelper.selectGenerator(p, random);
}
return new CramerShoupParameters(p, g1, g2, new SHA256Digest());
}
private static class ParametersHelper
{
private static final BigInteger TWO = BigInteger.valueOf(2);
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
static BigInteger[] generateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
for (; ; )
{
q = BigIntegers.createRandomPrime(qLength, 2, random);
p = q.shiftLeft(1).add(ONE);
if (p.isProbablePrime(certainty) && (certainty <= 2 || q.isProbablePrime(certainty)))
{
break;
}
}
return new BigInteger[]{p, q};
}
static BigInteger selectGenerator(BigInteger p, SecureRandom random)
{
BigInteger pMinusTwo = p.subtract(TWO);
BigInteger g;
/*
* RFC 2631 2.2.1.2 (and see: Handbook of Applied Cryptography 4.81)
*/
do
{
BigInteger h = BigIntegers.createRandomInRange(TWO, pMinusTwo, random);
g = h.modPow(TWO, p);
}
while (g.equals(ONE));
return g;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy