org.bouncycastle.math.ec.custom.sec.SecP160R1FieldElement Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Mod;
import org.bouncycastle.math.raw.Nat160;
import org.bouncycastle.util.Arrays;
public class SecP160R1FieldElement extends ECFieldElement.AbstractFp
{
public static final BigInteger Q = SecP160R1Curve.q;
protected int[] x;
public SecP160R1FieldElement(BigInteger x)
{
if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
{
throw new IllegalArgumentException("x value invalid for SecP160R1FieldElement");
}
this.x = SecP160R1Field.fromBigInteger(x);
}
public SecP160R1FieldElement()
{
this.x = Nat160.create();
}
protected SecP160R1FieldElement(int[] x)
{
this.x = x;
}
public boolean isZero()
{
return Nat160.isZero(x);
}
public boolean isOne()
{
return Nat160.isOne(x);
}
public boolean testBitZero()
{
return Nat160.getBit(x, 0) == 1;
}
public BigInteger toBigInteger()
{
return Nat160.toBigInteger(x);
}
public String getFieldName()
{
return "SecP160R1Field";
}
public int getFieldSize()
{
return Q.bitLength();
}
public ECFieldElement add(ECFieldElement b)
{
int[] z = Nat160.create();
SecP160R1Field.add(x, ((SecP160R1FieldElement)b).x, z);
return new SecP160R1FieldElement(z);
}
public ECFieldElement addOne()
{
int[] z = Nat160.create();
SecP160R1Field.addOne(x, z);
return new SecP160R1FieldElement(z);
}
public ECFieldElement subtract(ECFieldElement b)
{
int[] z = Nat160.create();
SecP160R1Field.subtract(x, ((SecP160R1FieldElement)b).x, z);
return new SecP160R1FieldElement(z);
}
public ECFieldElement multiply(ECFieldElement b)
{
int[] z = Nat160.create();
SecP160R1Field.multiply(x, ((SecP160R1FieldElement)b).x, z);
return new SecP160R1FieldElement(z);
}
public ECFieldElement divide(ECFieldElement b)
{
// return multiply(b.invert());
int[] z = Nat160.create();
Mod.invert(SecP160R1Field.P, ((SecP160R1FieldElement)b).x, z);
SecP160R1Field.multiply(z, x, z);
return new SecP160R1FieldElement(z);
}
public ECFieldElement negate()
{
int[] z = Nat160.create();
SecP160R1Field.negate(x, z);
return new SecP160R1FieldElement(z);
}
public ECFieldElement square()
{
int[] z = Nat160.create();
SecP160R1Field.square(x, z);
return new SecP160R1FieldElement(z);
}
public ECFieldElement invert()
{
// return new SecP160R1FieldElement(toBigInteger().modInverse(Q));
int[] z = Nat160.create();
Mod.invert(SecP160R1Field.P, x, z);
return new SecP160R1FieldElement(z);
}
// D.1.4 91
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public ECFieldElement sqrt()
{
/*
* Raise this element to the exponent 2^158 - 2^29
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 129 1s } { 29 0s }
*
* Therefore we need an addition chain containing 129 (the length of the repunit) We use:
* 1, 2, 4, 8, 16, 32, 64, 128, [129]
*/
int[] x1 = this.x;
if (Nat160.isZero(x1) || Nat160.isOne(x1))
{
return this;
}
int[] x2 = Nat160.create();
SecP160R1Field.square(x1, x2);
SecP160R1Field.multiply(x2, x1, x2);
int[] x4 = Nat160.create();
SecP160R1Field.squareN(x2, 2, x4);
SecP160R1Field.multiply(x4, x2, x4);
int[] x8 = x2;
SecP160R1Field.squareN(x4, 4, x8);
SecP160R1Field.multiply(x8, x4, x8);
int[] x16 = x4;
SecP160R1Field.squareN(x8, 8, x16);
SecP160R1Field.multiply(x16, x8, x16);
int[] x32 = x8;
SecP160R1Field.squareN(x16, 16, x32);
SecP160R1Field.multiply(x32, x16, x32);
int[] x64 = x16;
SecP160R1Field.squareN(x32, 32, x64);
SecP160R1Field.multiply(x64, x32, x64);
int[] x128 = x32;
SecP160R1Field.squareN(x64, 64, x128);
SecP160R1Field.multiply(x128, x64, x128);
int[] x129 = x64;
SecP160R1Field.square(x128, x129);
SecP160R1Field.multiply(x129, x1, x129);
int[] t1 = x129;
SecP160R1Field.squareN(t1, 29, t1);
int[] t2 = x128;
SecP160R1Field.square(t1, t2);
return Nat160.eq(x1, t2) ? new SecP160R1FieldElement(t1) : null;
}
public boolean equals(Object other)
{
if (other == this)
{
return true;
}
if (!(other instanceof SecP160R1FieldElement))
{
return false;
}
SecP160R1FieldElement o = (SecP160R1FieldElement)other;
return Nat160.eq(x, o.x);
}
public int hashCode()
{
return Q.hashCode() ^ Arrays.hashCode(x, 0, 5);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy