org.bouncycastle.pqc.crypto.newhope.NewHope Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.pqc.crypto.newhope;
import java.security.SecureRandom;
import org.bouncycastle.crypto.digests.SHA3Digest;
/**
* This implementation is based heavily on the C reference implementation from https://cryptojedi.org/crypto/index.shtml.
*/
class NewHope
{
private static final boolean STATISTICAL_TEST = false;
public static final int AGREEMENT_SIZE = 32;
public static final int POLY_SIZE = Params.N;
public static final int SENDA_BYTES = Params.POLY_BYTES + Params.SEED_BYTES;
public static final int SENDB_BYTES = Params.POLY_BYTES + Params.REC_BYTES;
public static void keygen(SecureRandom rand, byte[] send, short[] sk)
{
byte[] seed = new byte[Params.SEED_BYTES];
rand.nextBytes(seed);
sha3(seed); // don't expose RNG output
short[] a = new short[Params.N];
generateA(a, seed);
byte[] noiseSeed = new byte[32];
rand.nextBytes(noiseSeed);
Poly.getNoise(sk, noiseSeed, (byte)0);
Poly.toNTT(sk);
short[] e = new short[Params.N];
Poly.getNoise(e, noiseSeed, (byte)1);
Poly.toNTT(e);
short[] r = new short[Params.N];
Poly.pointWise(a, sk, r);
short[] pk = new short[Params.N];
Poly.add(r, e, pk);
encodeA(send, pk, seed);
}
public static void sharedB(SecureRandom rand, byte[] sharedKey, byte[] send, byte[] received)
{
short[] pkA = new short[Params.N];
byte[] seed = new byte[Params.SEED_BYTES];
decodeA(pkA, seed, received);
short[] a = new short[Params.N];
generateA(a, seed);
byte[] noiseSeed = new byte[32];
rand.nextBytes(noiseSeed);
short[] sp = new short[Params.N];
Poly.getNoise(sp, noiseSeed, (byte)0);
Poly.toNTT(sp);
short[] ep = new short[Params.N];
Poly.getNoise(ep, noiseSeed, (byte)1);
Poly.toNTT(ep);
short[] bp = new short[Params.N];
Poly.pointWise(a, sp, bp);
Poly.add(bp, ep, bp);
short[] v = new short[Params.N];
Poly.pointWise(pkA, sp, v);
Poly.fromNTT(v);
short[] epp = new short[Params.N];
Poly.getNoise(epp, noiseSeed, (byte)2);
Poly.add(v, epp, v);
short[] c = new short[Params.N];
ErrorCorrection.helpRec(c, v, noiseSeed, (byte)3);
encodeB(send, bp, c);
ErrorCorrection.rec(sharedKey, v, c);
if (!STATISTICAL_TEST)
{
sha3(sharedKey);
}
}
public static void sharedA(byte[] sharedKey, short[] sk, byte[] received)
{
short[] bp = new short[Params.N];
short[] c = new short[Params.N];
decodeB(bp, c, received);
short[] v = new short[Params.N];
Poly.pointWise(sk, bp, v);
Poly.fromNTT(v);
ErrorCorrection.rec(sharedKey, v, c);
if (!STATISTICAL_TEST)
{
sha3(sharedKey);
}
}
static void decodeA(short[] pk, byte[] seed, byte[] r)
{
Poly.fromBytes(pk, r);
System.arraycopy(r, Params.POLY_BYTES, seed, 0, Params.SEED_BYTES);
}
static void decodeB(short[] b, short[] c, byte[] r)
{
Poly.fromBytes(b, r);
for (int i = 0; i < Params.N / 4; ++i)
{
int j = 4 * i;
int ri = r[Params.POLY_BYTES + i] & 0xFF;
c[j + 0] = (short)(ri & 0x03);
c[j + 1] = (short)((ri >>> 2) & 0x03);
c[j + 2] = (short)((ri >>> 4) & 0x03);
c[j + 3] = (short)(ri >>> 6);
}
}
static void encodeA(byte[] r, short[] pk, byte[] seed)
{
Poly.toBytes(r, pk);
System.arraycopy(seed, 0, r, Params.POLY_BYTES, Params.SEED_BYTES);
}
static void encodeB(byte[] r, short[] b, short[] c)
{
Poly.toBytes(r, b);
for (int i = 0; i < Params.N / 4; ++i)
{
int j = 4 * i;
r[Params.POLY_BYTES + i] = (byte)(c[j] | (c[j + 1] << 2) | (c[j + 2] << 4) | (c[j + 3] << 6));
}
}
static void generateA(short[] a, byte[] seed)
{
Poly.uniform(a, seed);
}
static void sha3(byte[] sharedKey)
{
SHA3Digest d = new SHA3Digest(256);
d.update(sharedKey, 0, 32);
d.doFinal(sharedKey, 0);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy