org.bouncycastle.pqc.crypto.newhope.Poly Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.pqc.crypto.newhope;
import org.bouncycastle.crypto.digests.SHAKEDigest;
import org.bouncycastle.util.Pack;
class Poly
{
static void add(short[] x, short[] y, short[] z)
{
for (int i = 0; i < Params.N; ++i)
{
z[i] = Reduce.barrett((short)(x[i] + y[i]));
}
}
static void fromBytes(short[] r, byte[] a)
{
for (int i = 0; i < Params.N / 4; ++i)
{
int j = 7 * i;
int a0 = a[j + 0] & 0xFF, a1 = a[j + 1] & 0xFF, a2 = a[j + 2] & 0xFF, a3 = a[j + 3] & 0xFF,
a4 = a[j + 4] & 0xFF, a5 = a[j + 5] & 0xFF, a6 = a[j + 6] & 0xFF;
int k = 4 * i;
r[k + 0] = (short)( a0 | ((a1 & 0x3F) << 8));
r[k + 1] = (short)((a1 >>> 6) | (a2 << 2) | ((a3 & 0x0F) << 10));
r[k + 2] = (short)((a3 >>> 4) | (a4 << 4) | ((a5 & 0x03) << 12));
r[k + 3] = (short)((a5 >>> 2) | (a6 << 6));
}
}
static void fromNTT(short[] r)
{
NTT.bitReverse(r);
NTT.core(r, Precomp.OMEGAS_INV_MONTGOMERY);
NTT.mulCoefficients(r, Precomp.PSIS_INV_MONTGOMERY);
}
static void getNoise(short[] r, byte[] seed, byte nonce)
{
byte[] iv = new byte[8];
iv[0] = nonce;
byte[] buf = new byte[4 * Params.N];
ChaCha20.process(seed, iv, buf, 0, buf.length);
for (int i = 0; i < Params.N; ++i)
{
int t = Pack.bigEndianToInt(buf, i * 4);
//r[i] = (short)(bitCount(t) + Params.Q - Params.K);
int d = 0;
for (int j = 0; j < 8; ++j)
{
d += (t >> j) & 0x01010101;
}
int a = ((d >>> 24) + (d >>> 0)) & 0xFF;
int b = ((d >>> 16) + (d >>> 8)) & 0xFF;
r[i] = (short)(a + Params.Q - b);
}
}
static void pointWise(short[] x, short[] y, short[] z)
{
for (int i = 0; i < Params.N; ++i)
{
int xi = x[i] & 0xFFFF, yi = y[i] & 0xFFFF;
short t = Reduce.montgomery(3186 * yi); // t is now in Montgomery domain
z[i] = Reduce.montgomery(xi * (t & 0xFFFF)); // z[i] is back in normal domain
}
}
static void toBytes(byte[] r, short[] p)
{
for (int i = 0; i < Params.N / 4; ++i)
{
int j = 4 * i;
// Make sure that coefficients are in [0,q]
short t0 = normalize(p[j + 0]);
short t1 = normalize(p[j + 1]);
short t2 = normalize(p[j + 2]);
short t3 = normalize(p[j + 3]);
int k = 7 * i;
r[k + 0] = (byte)t0;
r[k + 1] = (byte)((t0 >> 8) | (t1 << 6));
r[k + 2] = (byte)(t1 >> 2);
r[k + 3] = (byte)((t1 >> 10) | (t2 << 4));
r[k + 4] = (byte)(t2 >> 4);
r[k + 5] = (byte)((t2 >> 12) | (t3 << 2));
r[k + 6] = (byte)(t3 >> 6);
}
}
static void toNTT(short[] r)
{
NTT.mulCoefficients(r, Precomp.PSIS_BITREV_MONTGOMERY);
NTT.core(r, Precomp.OMEGAS_MONTGOMERY);
}
static void uniform(short[] a, byte[] seed)
{
SHAKEDigest xof = new SHAKEDigest(128);
xof.update(seed, 0, seed.length);
int pos = 0;
for (;;)
{
byte[] output = new byte[256];
xof.doOutput(output, 0, output.length);
for (int i = 0; i < output.length; i += 2)
{
int val = (output[i] & 0xFF) | ((output[i + 1] & 0xFF) << 8);
if (val < 5 * Params.Q)
{
a[pos++] = (short)val;
if (pos == Params.N)
{
return;
}
}
}
}
}
// private static int bitCount(int n)
// {
//// return Integer.bitCount(n);
// n = n - ((n >>> 1) & 0x55555555);
// n = (n & 0x33333333) + ((n >>> 2) & 0x33333333);
// return ((n + (n >>> 4) & 0x0F0F0F0F) * 0x01010101) >>> 24;
// }
private static short normalize(short x)
{
int t = Reduce.barrett(x);
int m = t - Params.Q;
int c = m >> 31;
t = m ^ ((t ^ m) & c);
return (short)t;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy