org.bouncycastle.math.ec.custom.sec.SecP160R2Curve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.ec.AbstractECLookupTable;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECLookupTable;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.raw.Nat160;
import org.bouncycastle.util.encoders.Hex;
public class SecP160R2Curve extends ECCurve.AbstractFp
{
public static final BigInteger q = SecP160R2FieldElement.Q;
private static final int SECP160R2_DEFAULT_COORDS = COORD_JACOBIAN;
private static final ECFieldElement[] SECP160R2_AFFINE_ZS = new ECFieldElement[] { new SecP160R2FieldElement(ECConstants.ONE) };
protected SecP160R2Point infinity;
public SecP160R2Curve()
{
super(q);
this.infinity = new SecP160R2Point(this, null, null);
this.a = fromBigInteger(new BigInteger(1,
Hex.decodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC70")));
this.b = fromBigInteger(new BigInteger(1,
Hex.decodeStrict("B4E134D3FB59EB8BAB57274904664D5AF50388BA")));
this.order = new BigInteger(1, Hex.decodeStrict("0100000000000000000000351EE786A818F3A1A16B"));
this.cofactor = BigInteger.valueOf(1);
this.coord = SECP160R2_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new SecP160R2Curve();
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_JACOBIAN:
return true;
default:
return false;
}
}
public BigInteger getQ()
{
return q;
}
public int getFieldSize()
{
return q.bitLength();
}
public ECFieldElement fromBigInteger(BigInteger x)
{
return new SecP160R2FieldElement(x);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y)
{
return new SecP160R2Point(this, x, y);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
return new SecP160R2Point(this, x, y, zs);
}
public ECPoint getInfinity()
{
return infinity;
}
public ECLookupTable createCacheSafeLookupTable(ECPoint[] points, int off, final int len)
{
final int FE_INTS = 5;
final int[] table = new int[len * FE_INTS * 2];
{
int pos = 0;
for (int i = 0; i < len; ++i)
{
ECPoint p = points[off + i];
Nat160.copy(((SecP160R2FieldElement)p.getRawXCoord()).x, 0, table, pos); pos += FE_INTS;
Nat160.copy(((SecP160R2FieldElement)p.getRawYCoord()).x, 0, table, pos); pos += FE_INTS;
}
}
return new AbstractECLookupTable()
{
public int getSize()
{
return len;
}
public ECPoint lookup(int index)
{
int[] x = Nat160.create(), y = Nat160.create();
int pos = 0;
for (int i = 0; i < len; ++i)
{
int MASK = ((i ^ index) - 1) >> 31;
for (int j = 0; j < FE_INTS; ++j)
{
x[j] ^= table[pos + j] & MASK;
y[j] ^= table[pos + FE_INTS + j] & MASK;
}
pos += (FE_INTS * 2);
}
return createPoint(x, y);
}
public ECPoint lookupVar(int index)
{
int[] x = Nat160.create(), y = Nat160.create();
int pos = index * FE_INTS * 2;
for (int j = 0; j < FE_INTS; ++j)
{
x[j] = table[pos + j];
y[j] = table[pos + FE_INTS + j];
}
return createPoint(x, y);
}
private ECPoint createPoint(int[] x, int[] y)
{
return createRawPoint(new SecP160R2FieldElement(x), new SecP160R2FieldElement(y), SECP160R2_AFFINE_ZS);
}
};
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy