org.bouncycastle.crypto.digests.SHA1Digest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.digests;
import org.bouncycastle.util.Memoable;
import org.bouncycastle.util.Pack;
/**
* implementation of SHA-1 as outlined in "Handbook of Applied Cryptography", pages 346 - 349.
*
* It is interesting to ponder why the, apart from the extra IV, the other difference here from MD5
* is the "endianness" of the word processing!
*/
public class SHA1Digest
extends GeneralDigest
implements EncodableDigest
{
private static final int DIGEST_LENGTH = 20;
private int H1, H2, H3, H4, H5;
private int[] X = new int[80];
private int xOff;
/**
* Standard constructor
*/
public SHA1Digest()
{
reset();
}
/**
* Copy constructor. This will copy the state of the provided
* message digest.
*/
public SHA1Digest(SHA1Digest t)
{
super(t);
copyIn(t);
}
/**
* State constructor - create a digest initialised with the state of a previous one.
*
* @param encodedState the encoded state from the originating digest.
*/
public SHA1Digest(byte[] encodedState)
{
super(encodedState);
H1 = Pack.bigEndianToInt(encodedState, 16);
H2 = Pack.bigEndianToInt(encodedState, 20);
H3 = Pack.bigEndianToInt(encodedState, 24);
H4 = Pack.bigEndianToInt(encodedState, 28);
H5 = Pack.bigEndianToInt(encodedState, 32);
xOff = Pack.bigEndianToInt(encodedState, 36);
for (int i = 0; i != xOff; i++)
{
X[i] = Pack.bigEndianToInt(encodedState, 40 + (i * 4));
}
}
private void copyIn(SHA1Digest t)
{
H1 = t.H1;
H2 = t.H2;
H3 = t.H3;
H4 = t.H4;
H5 = t.H5;
System.arraycopy(t.X, 0, X, 0, t.X.length);
xOff = t.xOff;
}
public String getAlgorithmName()
{
return "SHA-1";
}
public int getDigestSize()
{
return DIGEST_LENGTH;
}
protected void processWord(
byte[] in,
int inOff)
{
// Note: Inlined for performance
// X[xOff] = Pack.bigEndianToInt(in, inOff);
int n = in[ inOff] << 24;
n |= (in[++inOff] & 0xff) << 16;
n |= (in[++inOff] & 0xff) << 8;
n |= (in[++inOff] & 0xff);
X[xOff] = n;
if (++xOff == 16)
{
processBlock();
}
}
protected void processLength(
long bitLength)
{
if (xOff > 14)
{
processBlock();
}
X[14] = (int)(bitLength >>> 32);
X[15] = (int)bitLength;
}
public int doFinal(
byte[] out,
int outOff)
{
finish();
Pack.intToBigEndian(H1, out, outOff);
Pack.intToBigEndian(H2, out, outOff + 4);
Pack.intToBigEndian(H3, out, outOff + 8);
Pack.intToBigEndian(H4, out, outOff + 12);
Pack.intToBigEndian(H5, out, outOff + 16);
reset();
return DIGEST_LENGTH;
}
/**
* reset the chaining variables
*/
public void reset()
{
super.reset();
H1 = 0x67452301;
H2 = 0xefcdab89;
H3 = 0x98badcfe;
H4 = 0x10325476;
H5 = 0xc3d2e1f0;
xOff = 0;
for (int i = 0; i != X.length; i++)
{
X[i] = 0;
}
}
//
// Additive constants
//
private static final int Y1 = 0x5a827999;
private static final int Y2 = 0x6ed9eba1;
private static final int Y3 = 0x8f1bbcdc;
private static final int Y4 = 0xca62c1d6;
private int f(
int u,
int v,
int w)
{
return ((u & v) | ((~u) & w));
}
private int h(
int u,
int v,
int w)
{
return (u ^ v ^ w);
}
private int g(
int u,
int v,
int w)
{
return ((u & v) | (u & w) | (v & w));
}
protected void processBlock()
{
//
// expand 16 word block into 80 word block.
//
for (int i = 16; i < 80; i++)
{
int t = X[i - 3] ^ X[i - 8] ^ X[i - 14] ^ X[i - 16];
X[i] = t << 1 | t >>> 31;
}
//
// set up working variables.
//
int A = H1;
int B = H2;
int C = H3;
int D = H4;
int E = H5;
//
// round 1
//
int idx = 0;
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + f(B, C, D) + E + X[idx++] + Y1
// B = rotateLeft(B, 30)
E += (A << 5 | A >>> 27) + f(B, C, D) + X[idx++] + Y1;
B = B << 30 | B >>> 2;
D += (E << 5 | E >>> 27) + f(A, B, C) + X[idx++] + Y1;
A = A << 30 | A >>> 2;
C += (D << 5 | D >>> 27) + f(E, A, B) + X[idx++] + Y1;
E = E << 30 | E >>> 2;
B += (C << 5 | C >>> 27) + f(D, E, A) + X[idx++] + Y1;
D = D << 30 | D >>> 2;
A += (B << 5 | B >>> 27) + f(C, D, E) + X[idx++] + Y1;
C = C << 30 | C >>> 2;
}
//
// round 2
//
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + h(B, C, D) + E + X[idx++] + Y2
// B = rotateLeft(B, 30)
E += (A << 5 | A >>> 27) + h(B, C, D) + X[idx++] + Y2;
B = B << 30 | B >>> 2;
D += (E << 5 | E >>> 27) + h(A, B, C) + X[idx++] + Y2;
A = A << 30 | A >>> 2;
C += (D << 5 | D >>> 27) + h(E, A, B) + X[idx++] + Y2;
E = E << 30 | E >>> 2;
B += (C << 5 | C >>> 27) + h(D, E, A) + X[idx++] + Y2;
D = D << 30 | D >>> 2;
A += (B << 5 | B >>> 27) + h(C, D, E) + X[idx++] + Y2;
C = C << 30 | C >>> 2;
}
//
// round 3
//
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + g(B, C, D) + E + X[idx++] + Y3
// B = rotateLeft(B, 30)
E += (A << 5 | A >>> 27) + g(B, C, D) + X[idx++] + Y3;
B = B << 30 | B >>> 2;
D += (E << 5 | E >>> 27) + g(A, B, C) + X[idx++] + Y3;
A = A << 30 | A >>> 2;
C += (D << 5 | D >>> 27) + g(E, A, B) + X[idx++] + Y3;
E = E << 30 | E >>> 2;
B += (C << 5 | C >>> 27) + g(D, E, A) + X[idx++] + Y3;
D = D << 30 | D >>> 2;
A += (B << 5 | B >>> 27) + g(C, D, E) + X[idx++] + Y3;
C = C << 30 | C >>> 2;
}
//
// round 4
//
for (int j = 0; j <= 3; j++)
{
// E = rotateLeft(A, 5) + h(B, C, D) + E + X[idx++] + Y4
// B = rotateLeft(B, 30)
E += (A << 5 | A >>> 27) + h(B, C, D) + X[idx++] + Y4;
B = B << 30 | B >>> 2;
D += (E << 5 | E >>> 27) + h(A, B, C) + X[idx++] + Y4;
A = A << 30 | A >>> 2;
C += (D << 5 | D >>> 27) + h(E, A, B) + X[idx++] + Y4;
E = E << 30 | E >>> 2;
B += (C << 5 | C >>> 27) + h(D, E, A) + X[idx++] + Y4;
D = D << 30 | D >>> 2;
A += (B << 5 | B >>> 27) + h(C, D, E) + X[idx++] + Y4;
C = C << 30 | C >>> 2;
}
H1 += A;
H2 += B;
H3 += C;
H4 += D;
H5 += E;
//
// reset start of the buffer.
//
xOff = 0;
for (int i = 0; i < 16; i++)
{
X[i] = 0;
}
}
public Memoable copy()
{
return new SHA1Digest(this);
}
public void reset(Memoable other)
{
SHA1Digest d = (SHA1Digest)other;
super.copyIn(d);
copyIn(d);
}
public byte[] getEncodedState()
{
byte[] state = new byte[40 + xOff * 4];
super.populateState(state);
Pack.intToBigEndian(H1, state, 16);
Pack.intToBigEndian(H2, state, 20);
Pack.intToBigEndian(H3, state, 24);
Pack.intToBigEndian(H4, state, 28);
Pack.intToBigEndian(H5, state, 32);
Pack.intToBigEndian(xOff, state, 36);
for (int i = 0; i != xOff; i++)
{
Pack.intToBigEndian(X[i], state, 40 + (i * 4));
}
return state;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy