All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.WTauNafMultiplier Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.math.ec;

import java.math.BigInteger;

/**
 * Class implementing the WTNAF (Window
 *  τ-adic Non-Adjacent Form) algorithm.
 */
public class WTauNafMultiplier extends AbstractECMultiplier
{
    // TODO Create WTauNafUtil class and move various functionality into it
    static final String PRECOMP_NAME = "bc_wtnaf";

    /**
     * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
     * by  k using the reduced  τ-adic NAF (RTNAF)
     * method.
     * @param point The ECPoint.AbstractF2m to multiply.
     * @param k The integer by which to multiply  k.
     * @return  p multiplied by  k.
     */
    protected ECPoint multiplyPositive(ECPoint point, BigInteger k)
    {
        if (!(point instanceof ECPoint.AbstractF2m))
        {
            throw new IllegalArgumentException("Only ECPoint.AbstractF2m can be " +
                    "used in WTauNafMultiplier");
        }

        ECPoint.AbstractF2m p = (ECPoint.AbstractF2m)point;
        ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve();
        int m = curve.getFieldSize();
        byte a = curve.getA().toBigInteger().byteValue();
        byte mu = Tnaf.getMu(a);
        BigInteger[] s = curve.getSi();

        ZTauElement rho = Tnaf.partModReduction(k, m, a, s, mu, (byte)10);

        return multiplyWTnaf(p, rho, a, mu);
    }

    /**
     * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
     * by an element  λ of  Z[τ] using
     * the  τ-adic NAF (TNAF) method.
     * @param p The ECPoint.AbstractF2m to multiply.
     * @param lambda The element  λ of
     *  Z[τ] of which to compute the
     *  [τ]-adic NAF.
     * @return  p multiplied by  λ.
     */
    private ECPoint.AbstractF2m multiplyWTnaf(ECPoint.AbstractF2m p, ZTauElement lambda, byte a, byte mu)
    {
        ZTauElement[] alpha = (a == 0) ? Tnaf.alpha0 : Tnaf.alpha1;

        BigInteger tw = Tnaf.getTw(mu, Tnaf.WIDTH);

        byte[]u = Tnaf.tauAdicWNaf(mu, lambda, Tnaf.WIDTH,
            BigInteger.valueOf(Tnaf.POW_2_WIDTH), tw, alpha);

        return multiplyFromWTnaf(p, u);
    }

    /**
     * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
     * by an element  λ of  Z[τ]
     * using the window  τ-adic NAF (TNAF) method, given the
     * WTNAF of  λ.
     * @param p The ECPoint.AbstractF2m to multiply.
     * @param u The the WTNAF of  λ..
     * @return  λ * p
     */
    private static ECPoint.AbstractF2m multiplyFromWTnaf(final ECPoint.AbstractF2m p, byte[] u)
    {
        ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve();
        final byte a = curve.getA().toBigInteger().byteValue();

        WTauNafPreCompInfo preCompInfo = (WTauNafPreCompInfo)curve.precompute(p, PRECOMP_NAME, new PreCompCallback()
        {
            public PreCompInfo precompute(PreCompInfo existing)
            {
                if (existing instanceof WTauNafPreCompInfo)
                {
                    return existing;
                }

                WTauNafPreCompInfo result = new WTauNafPreCompInfo();
                result.setPreComp(Tnaf.getPreComp(p, a));
                return result;
            }
        });

        ECPoint.AbstractF2m[] pu = preCompInfo.getPreComp();

        // TODO Include negations in precomp (optionally) and use from here
        ECPoint.AbstractF2m[] puNeg = new ECPoint.AbstractF2m[pu.length];
        for (int i = 0; i < pu.length; ++i)
        {
            puNeg[i] = (ECPoint.AbstractF2m)pu[i].negate();
        }


        // q = infinity
        ECPoint.AbstractF2m q = (ECPoint.AbstractF2m) p.getCurve().getInfinity();

        int tauCount = 0;
        for (int i = u.length - 1; i >= 0; i--)
        {
            ++tauCount;
            int ui = u[i];
            if (ui != 0)
            {
                q = q.tauPow(tauCount);
                tauCount = 0;

                ECPoint x = ui > 0 ? pu[ui >>> 1] : puNeg[(-ui) >>> 1];
                q = (ECPoint.AbstractF2m)q.add(x);
            }
        }
        if (tauCount > 0)
        {
            q = q.tauPow(tauCount);
        }
        return q;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy