org.bouncycastle.math.ec.WTauNafMultiplier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.math.ec;
import java.math.BigInteger;
/**
* Class implementing the WTNAF (Window
* τ
-adic Non-Adjacent Form) algorithm.
*/
public class WTauNafMultiplier extends AbstractECMultiplier
{
// TODO Create WTauNafUtil class and move various functionality into it
static final String PRECOMP_NAME = "bc_wtnaf";
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by k using the reduced τ-adic NAF (RTNAF)
* method.
* @param point The ECPoint.AbstractF2m to multiply.
* @param k The integer by which to multiply k.
* @return p multiplied by k.
*/
protected ECPoint multiplyPositive(ECPoint point, BigInteger k)
{
if (!(point instanceof ECPoint.AbstractF2m))
{
throw new IllegalArgumentException("Only ECPoint.AbstractF2m can be " +
"used in WTauNafMultiplier");
}
ECPoint.AbstractF2m p = (ECPoint.AbstractF2m)point;
ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve();
byte a = curve.getA().toBigInteger().byteValue();
byte mu = Tnaf.getMu(a);
ZTauElement rho = Tnaf.partModReduction(curve, k, a, mu, (byte)10);
return multiplyWTnaf(p, rho, a, mu);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by an element λ of Z[τ] using
* the τ-adic NAF (TNAF) method.
* @param p The ECPoint.AbstractF2m to multiply.
* @param lambda The element λ of
* Z[τ] of which to compute the
* [τ]-adic NAF.
* @return p multiplied by λ.
*/
private ECPoint.AbstractF2m multiplyWTnaf(ECPoint.AbstractF2m p, ZTauElement lambda, byte a, byte mu)
{
ZTauElement[] alpha = (a == 0) ? Tnaf.alpha0 : Tnaf.alpha1;
BigInteger tw = Tnaf.getTw(mu, Tnaf.WIDTH);
byte[] u = Tnaf.tauAdicWNaf(mu, lambda, Tnaf.WIDTH, tw.intValue(), alpha);
return multiplyFromWTnaf(p, u);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by an element λ of Z[τ]
* using the window τ-adic NAF (TNAF) method, given the
* WTNAF of λ.
* @param p The ECPoint.AbstractF2m to multiply.
* @param u The the WTNAF of λ..
* @return λ * p
*/
private static ECPoint.AbstractF2m multiplyFromWTnaf(final ECPoint.AbstractF2m p, byte[] u)
{
ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve();
final byte a = curve.getA().toBigInteger().byteValue();
WTauNafPreCompInfo preCompInfo = (WTauNafPreCompInfo)curve.precompute(p, PRECOMP_NAME, new PreCompCallback()
{
public PreCompInfo precompute(PreCompInfo existing)
{
if (existing instanceof WTauNafPreCompInfo)
{
return existing;
}
WTauNafPreCompInfo result = new WTauNafPreCompInfo();
result.setPreComp(Tnaf.getPreComp(p, a));
return result;
}
});
ECPoint.AbstractF2m[] pu = preCompInfo.getPreComp();
// TODO Include negations in precomp (optionally) and use from here
ECPoint.AbstractF2m[] puNeg = new ECPoint.AbstractF2m[pu.length];
for (int i = 0; i < pu.length; ++i)
{
puNeg[i] = (ECPoint.AbstractF2m)pu[i].negate();
}
// q = infinity
ECPoint.AbstractF2m q = (ECPoint.AbstractF2m) p.getCurve().getInfinity();
int tauCount = 0;
for (int i = u.length - 1; i >= 0; i--)
{
++tauCount;
int ui = u[i];
if (ui != 0)
{
q = q.tauPow(tauCount);
tauCount = 0;
ECPoint x = ui > 0 ? pu[ui >>> 1] : puNeg[(-ui) >>> 1];
q = (ECPoint.AbstractF2m)q.add(x);
}
}
if (tauCount > 0)
{
q = q.tauPow(tauCount);
}
return q;
}
}