org.bouncycastle.crypto.engines.TwofishEngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.engines;
import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.util.Integers;
import org.bouncycastle.util.Pack;
/**
* A class that provides Twofish encryption operations.
*
* This Java implementation is based on the Java reference
* implementation provided by Bruce Schneier and developed
* by Raif S. Naffah.
*/
public final class TwofishEngine
implements BlockCipher
{
private static final byte[][] P = {
{ // p0
(byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8,
(byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76,
(byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78,
(byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38,
(byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98,
(byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C,
(byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26,
(byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48,
(byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30,
(byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23,
(byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59,
(byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82,
(byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E,
(byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C,
(byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE,
(byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61,
(byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5,
(byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B,
(byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B,
(byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1,
(byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45,
(byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66,
(byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56,
(byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7,
(byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5,
(byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA,
(byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF,
(byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71,
(byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD,
(byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8,
(byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D,
(byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7,
(byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED,
(byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2,
(byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11,
(byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90,
(byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF,
(byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB,
(byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B,
(byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF,
(byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE,
(byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B,
(byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46,
(byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64,
(byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F,
(byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A,
(byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A,
(byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A,
(byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29,
(byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02,
(byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17,
(byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D,
(byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74,
(byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72,
(byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12,
(byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34,
(byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68,
(byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8,
(byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40,
(byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4,
(byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0,
(byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00,
(byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42,
(byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0 },
{ // p1
(byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4,
(byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8,
(byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B,
(byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B,
(byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD,
(byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1,
(byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B,
(byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F,
(byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B,
(byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D,
(byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E,
(byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5,
(byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14,
(byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3,
(byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54,
(byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51,
(byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A,
(byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96,
(byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10,
(byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C,
(byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7,
(byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70,
(byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB,
(byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8,
(byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF,
(byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC,
(byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF,
(byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2,
(byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82,
(byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9,
(byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97,
(byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17,
(byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D,
(byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3,
(byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C,
(byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E,
(byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F,
(byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49,
(byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21,
(byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9,
(byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD,
(byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01,
(byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F,
(byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48,
(byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E,
(byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19,
(byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57,
(byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64,
(byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE,
(byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5,
(byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44,
(byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69,
(byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15,
(byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E,
(byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34,
(byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC,
(byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B,
(byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB,
(byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52,
(byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9,
(byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4,
(byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2,
(byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56,
(byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91 }
};
/**
* Define the fixed p0/p1 permutations used in keyed S-box lookup.
* By changing the following constant definitions, the S-boxes will
* automatically get changed in the Twofish engine.
*/
private static final int P_00 = 1;
private static final int P_01 = 0;
private static final int P_02 = 0;
private static final int P_03 = P_01 ^ 1;
private static final int P_04 = 1;
private static final int P_10 = 0;
private static final int P_11 = 0;
private static final int P_12 = 1;
private static final int P_13 = P_11 ^ 1;
private static final int P_14 = 0;
private static final int P_20 = 1;
private static final int P_21 = 1;
private static final int P_22 = 0;
private static final int P_23 = P_21 ^ 1;
private static final int P_24 = 0;
private static final int P_30 = 0;
private static final int P_31 = 1;
private static final int P_32 = 1;
private static final int P_33 = P_31 ^ 1;
private static final int P_34 = 1;
/* Primitive polynomial for GF(256) */
private static final int GF256_FDBK = 0x169;
private static final int GF256_FDBK_2 = GF256_FDBK / 2;
private static final int GF256_FDBK_4 = GF256_FDBK / 4;
private static final int RS_GF_FDBK = 0x14D; // field generator
//====================================
// Useful constants
//====================================
private static final int ROUNDS = 16;
private static final int MAX_ROUNDS = 16; // bytes = 128 bits
private static final int BLOCK_SIZE = 16; // bytes = 128 bits
private static final int MAX_KEY_BITS = 256;
private static final int INPUT_WHITEN=0;
private static final int OUTPUT_WHITEN=INPUT_WHITEN+BLOCK_SIZE/4; // 4
private static final int ROUND_SUBKEYS=OUTPUT_WHITEN+BLOCK_SIZE/4;// 8
private static final int TOTAL_SUBKEYS=ROUND_SUBKEYS+2*MAX_ROUNDS;// 40
private static final int SK_STEP = 0x02020202;
private static final int SK_BUMP = 0x01010101;
private static final int SK_ROTL = 9;
private boolean encrypting = false;
private int[] gMDS0 = new int[MAX_KEY_BITS];
private int[] gMDS1 = new int[MAX_KEY_BITS];
private int[] gMDS2 = new int[MAX_KEY_BITS];
private int[] gMDS3 = new int[MAX_KEY_BITS];
/**
* gSubKeys[] and gSBox[] are eventually used in the
* encryption and decryption methods.
*/
private int[] gSubKeys;
private int[] gSBox;
private int k64Cnt = 0;
private byte[] workingKey = null;
public TwofishEngine()
{
CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), 256));
// calculate the MDS matrix
int[] m1 = new int[2];
int[] mX = new int[2];
int[] mY = new int[2];
int j;
for (int i=0; i< MAX_KEY_BITS ; i++)
{
j = P[0][i] & 0xff;
m1[0] = j;
mX[0] = Mx_X(j) & 0xff;
mY[0] = Mx_Y(j) & 0xff;
j = P[1][i] & 0xff;
m1[1] = j;
mX[1] = Mx_X(j) & 0xff;
mY[1] = Mx_Y(j) & 0xff;
gMDS0[i] = m1[P_00] | mX[P_00] << 8 |
mY[P_00] << 16 | mY[P_00] << 24;
gMDS1[i] = mY[P_10] | mY[P_10] << 8 |
mX[P_10] << 16 | m1[P_10] << 24;
gMDS2[i] = mX[P_20] | mY[P_20] << 8 |
m1[P_20] << 16 | mY[P_20] << 24;
gMDS3[i] = mX[P_30] | m1[P_30] << 8 |
mY[P_30] << 16 | mX[P_30] << 24;
}
}
/**
* initialise a Twofish cipher.
*
* @param encrypting whether or not we are for encryption.
* @param params the parameters required to set up the cipher.
* @exception IllegalArgumentException if the params argument is
* inappropriate.
*/
public void init(
boolean encrypting,
CipherParameters params)
{
if (params instanceof KeyParameter)
{
this.encrypting = encrypting;
this.workingKey = ((KeyParameter)params).getKey();
int keyBits = this.workingKey.length * 8;
switch (keyBits)
{
case 128:
case 192:
case 256:
break;
default:
throw new IllegalArgumentException("Key length not 128/192/256 bits.");
}
CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), keyBits, params, Utils.getPurpose(encrypting)));
this.k64Cnt = this.workingKey.length / 8;
setKey(this.workingKey);
return;
}
throw new IllegalArgumentException("invalid parameter passed to Twofish init - " + params.getClass().getName());
}
public String getAlgorithmName()
{
return "Twofish";
}
public int processBlock(
byte[] in,
int inOff,
byte[] out,
int outOff)
{
if (workingKey == null)
{
throw new IllegalStateException("Twofish not initialised");
}
if ((inOff + BLOCK_SIZE) > in.length)
{
throw new DataLengthException("input buffer too short");
}
if ((outOff + BLOCK_SIZE) > out.length)
{
throw new OutputLengthException("output buffer too short");
}
if (encrypting)
{
encryptBlock(in, inOff, out, outOff);
}
else
{
decryptBlock(in, inOff, out, outOff);
}
return BLOCK_SIZE;
}
public void reset()
{
if (this.workingKey != null)
{
setKey(this.workingKey);
}
}
public int getBlockSize()
{
return BLOCK_SIZE;
}
//==================================
// Private Implementation
//==================================
private void setKey(byte[] key)
{
int[] k32e = new int[MAX_KEY_BITS/64]; // 4
int[] k32o = new int[MAX_KEY_BITS/64]; // 4
int[] sBoxKeys = new int[MAX_KEY_BITS/64]; // 4
gSubKeys = new int[TOTAL_SUBKEYS];
/*
* k64Cnt is the number of 8 byte blocks (64 chunks) that are in the input key.
* The input key is 16, 24 or 32 bytes, so the range for k64Cnt is 2..4
*/
for (int i=0; i>> (32-SK_ROTL);
}
/*
* fully expand the table for speed
*/
int k0 = sBoxKeys[0];
int k1 = sBoxKeys[1];
int k2 = sBoxKeys[2];
int k3 = sBoxKeys[3];
int b0, b1, b2, b3;
gSBox = new int[4*MAX_KEY_BITS];
for (int i=0; i
*
* g(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
*
* where a = primitive root of field generator 0x14D
*/
private int RS_rem(int x)
{
int b = (x >>> 24) & 0xff;
int g2 = ((b << 1) ^
((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff;
int g3 = ((b >>> 1) ^
((b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0)) ^ g2 ;
return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b);
}
private int LFSR1(int x)
{
return (x >> 1) ^
(((x & 0x01) != 0) ? GF256_FDBK_2 : 0);
}
private int LFSR2(int x)
{
return (x >> 2) ^
(((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^
(((x & 0x01) != 0) ? GF256_FDBK_4 : 0);
}
private int Mx_X(int x)
{
return x ^ LFSR2(x);
} // 5B
private int Mx_Y(int x)
{
return x ^ LFSR1(x) ^ LFSR2(x);
} // EF
private int b0(int x)
{
return x & 0xff;
}
private int b1(int x)
{
return (x >>> 8) & 0xff;
}
private int b2(int x)
{
return (x >>> 16) & 0xff;
}
private int b3(int x)
{
return (x >>> 24) & 0xff;
}
private int Fe32_0(int x)
{
return gSBox[ 0x000 + 2*(x & 0xff) ] ^
gSBox[ 0x001 + 2*((x >>> 8) & 0xff) ] ^
gSBox[ 0x200 + 2*((x >>> 16) & 0xff) ] ^
gSBox[ 0x201 + 2*((x >>> 24) & 0xff) ];
}
private int Fe32_3(int x)
{
return gSBox[ 0x000 + 2*((x >>> 24) & 0xff) ] ^
gSBox[ 0x001 + 2*(x & 0xff) ] ^
gSBox[ 0x200 + 2*((x >>> 8) & 0xff) ] ^
gSBox[ 0x201 + 2*((x >>> 16) & 0xff) ];
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy