org.bouncycastle.crypto.kems.ECIESKEMExtractor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.kems;
import java.math.BigInteger;
import org.bouncycastle.crypto.CryptoServicePurpose;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DerivationFunction;
import org.bouncycastle.crypto.EncapsulatedSecretExtractor;
import org.bouncycastle.crypto.constraints.ConstraintUtils;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECPoint;
/**
* The ECIES Key Encapsulation Mechanism (ECIES-KEM) from ISO 18033-2.
*/
public class ECIESKEMExtractor
implements EncapsulatedSecretExtractor
{
private final ECPrivateKeyParameters decKey;
private int keyLen;
private DerivationFunction kdf;
private boolean CofactorMode;
private boolean OldCofactorMode;
private boolean SingleHashMode;
/**
* Set up the ECIES-KEM.
*
* @param decKey the decryption key.
* @param keyLen length in bytes of key to generate.
* @param kdf the key derivation function to be used.
*/
public ECIESKEMExtractor(
ECPrivateKeyParameters decKey,
int keyLen,
DerivationFunction kdf)
{
this.decKey = decKey;
this.keyLen = keyLen;
this.kdf = kdf;
this.CofactorMode = false;
this.OldCofactorMode = false;
this.SingleHashMode = false;
}
/**
* Set up the ECIES-KEM.
*
* @param decKey the decryption key.
* @param keyLen length in bytes of key to generate.
* @param kdf the key derivation function to be used.
* @param cofactorMode if true use the new cofactor ECDH.
* @param oldCofactorMode if true use the old cofactor ECDH.
* @param singleHashMode if true use single hash mode.
*/
public ECIESKEMExtractor(
ECPrivateKeyParameters decKey,
int keyLen,
DerivationFunction kdf,
boolean cofactorMode,
boolean oldCofactorMode,
boolean singleHashMode)
{
this.decKey = decKey;
this.keyLen = keyLen;
this.kdf = kdf;
// If both cofactorMode and oldCofactorMode are set to true
// then the implementation will use the new cofactor ECDH
this.CofactorMode = cofactorMode;
// https://www.shoup.net/iso/std4.pdf, Page 34.
if (cofactorMode)
{
this.OldCofactorMode = false;
}
else
{
this.OldCofactorMode = oldCofactorMode;
}
this.SingleHashMode = singleHashMode;
CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties("ECIESKem",
ConstraintUtils.bitsOfSecurityFor(this.decKey.getParameters().getCurve()), decKey, CryptoServicePurpose.DECRYPTION));
}
public byte[] extractSecret(byte[] encapsulation)
{
ECPrivateKeyParameters ecPrivKey = this.decKey;
ECDomainParameters ecParams = ecPrivKey.getParameters();
ECCurve curve = ecParams.getCurve();
BigInteger n = ecParams.getN();
BigInteger h = ecParams.getH();
// Decode the ephemeral public key
// Compute the static-ephemeral key agreement
ECPoint gHat = curve.decodePoint(encapsulation);
if ((CofactorMode) || (OldCofactorMode))
{
gHat = gHat.multiply(h);
}
BigInteger xHat = ecPrivKey.getD();
if (CofactorMode)
{
xHat = xHat.multiply(ecParams.getHInv()).mod(n);
}
ECPoint hTilde = gHat.multiply(xHat).normalize();
// Encode the shared secret value
byte[] PEH = hTilde.getAffineXCoord().getEncoded();
return ECIESKEMGenerator.deriveKey(SingleHashMode, kdf, keyLen, encapsulation, PEH);
}
public int getEncapsulationLength()
{
return (decKey.getParameters().getCurve().getFieldSize() / 8) * 2 + 1;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy