org.bouncycastle.crypto.kems.ECIESKEMGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.kems;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.crypto.CryptoServicePurpose;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DerivationFunction;
import org.bouncycastle.crypto.EncapsulatedSecretGenerator;
import org.bouncycastle.crypto.SecretWithEncapsulation;
import org.bouncycastle.crypto.constraints.ConstraintUtils;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.AsymmetricKeyParameter;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.crypto.params.KDFParameters;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.FixedPointCombMultiplier;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.BigIntegers;
/**
* The ECIES Key Encapsulation Mechanism (ECIES-KEM) from ISO 18033-2.
*/
public class ECIESKEMGenerator
implements EncapsulatedSecretGenerator
{
private static final BigInteger ONE = BigInteger.valueOf(1);
private DerivationFunction kdf;
private SecureRandom rnd;
private final int keySize;
private boolean CofactorMode;
private boolean OldCofactorMode;
private boolean SingleHashMode;
/**
* Set up the ECIES-KEM.
*
* @param keySize size of the key to be generated (in bytes).
* @param kdf the key derivation function to be used.
* @param rnd the random source for the session key.
*/
public ECIESKEMGenerator(
int keySize,
DerivationFunction kdf,
SecureRandom rnd)
{
this.keySize = keySize;
this.kdf = kdf;
this.rnd = rnd;
this.CofactorMode = false;
this.OldCofactorMode = false;
this.SingleHashMode = false;
}
/**
* Set up the ECIES-KEM.
* @param keyLen length in bytes of key to generate
* @param kdf the key derivation function to be used.
* @param rnd the random source for the session key.
* @param cofactorMode if true use the new cofactor ECDH.
* @param oldCofactorMode if true use the old cofactor ECDH.
* @param singleHashMode if true use single hash mode.
*/
public ECIESKEMGenerator(
int keyLen,
DerivationFunction kdf,
SecureRandom rnd,
boolean cofactorMode,
boolean oldCofactorMode,
boolean singleHashMode)
{
this.kdf = kdf;
this.rnd = rnd;
this.keySize = keyLen;
// If both cofactorMode and oldCofactorMode are set to true
// then the implementation will use the new cofactor ECDH
this.CofactorMode = cofactorMode;
// https://www.shoup.net/iso/std4.pdf, Page 34.
if (cofactorMode)
{
this.OldCofactorMode = false;
}
else
{
this.OldCofactorMode = oldCofactorMode;
}
this.SingleHashMode = singleHashMode;
}
private ECMultiplier createBasePointMultiplier()
{
return new FixedPointCombMultiplier();
}
public SecretWithEncapsulation generateEncapsulated(AsymmetricKeyParameter recipientKey)
{
if (!(recipientKey instanceof ECKeyParameters))
{
throw new IllegalArgumentException("EC key required");
}
ECPublicKeyParameters ecPubKey = (ECPublicKeyParameters)recipientKey;
CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties("ECIESKem",
ConstraintUtils.bitsOfSecurityFor(ecPubKey.getParameters().getCurve()), recipientKey, CryptoServicePurpose.ENCRYPTION));
ECDomainParameters ecParams = ecPubKey.getParameters();
ECCurve curve = ecParams.getCurve();
BigInteger n = ecParams.getN();
BigInteger h = ecParams.getH();
// Generate the ephemeral key pair
BigInteger r = BigIntegers.createRandomInRange(ONE, n, rnd);
// Compute the static-ephemeral key agreement
BigInteger rPrime = OldCofactorMode ? r.multiply(h).mod(n) : r;
ECMultiplier basePointMultiplier = createBasePointMultiplier();
ECPoint[] ghTilde = new ECPoint[]{
basePointMultiplier.multiply(ecParams.getG(), r),
ecPubKey.getQ().multiply(rPrime)
};
// NOTE: More efficient than normalizing each individually
curve.normalizeAll(ghTilde);
ECPoint gTilde = ghTilde[0], hTilde = ghTilde[1];
// Encode the ephemeral public key
byte[] C = gTilde.getEncoded(false);
byte[] enc = new byte[C.length];
System.arraycopy(C, 0, enc, 0, C.length);
// Encode the shared secret value
byte[] PEH = hTilde.getAffineXCoord().getEncoded();
return new SecretWithEncapsulationImpl(deriveKey(SingleHashMode, kdf, this.keySize, C, PEH), enc);
}
static byte[] deriveKey(boolean SingleHashMode, DerivationFunction kdf, int keyLen, byte[] C, byte[] PEH)
{
byte[] kdfInput = PEH;
if (!SingleHashMode)
{
kdfInput = Arrays.concatenate(C, PEH);
Arrays.fill(PEH, (byte)0);
}
try
{
// Initialise the KDF
kdf.init(new KDFParameters(kdfInput, null));
// Generate the secret key
byte[] K = new byte[keyLen];
kdf.generateBytes(K, 0, K.length);
// Return the ciphertext
return K;
}
finally
{
Arrays.fill(kdfInput, (byte)0);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy