All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.raw.Mod Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.math.raw;

import java.util.Random;

import org.bouncycastle.util.Integers;

/**
 * Modular inversion as implemented in this class is based on the paper "Fast constant-time gcd
 * computation and modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
 * 

* In some cases (when it is faster) we use the "half delta" variant of safegcd based on * hddivsteps. */ public abstract class Mod { private static final int M30 = 0x3FFFFFFF; private static final long M32L = 0xFFFFFFFFL; public static void checkedModOddInverse(int[] m, int[] x, int[] z) { if (0 == modOddInverse(m, x, z)) { throw new ArithmeticException("Inverse does not exist."); } } public static void checkedModOddInverseVar(int[] m, int[] x, int[] z) { if (!modOddInverseVar(m, x, z)) { throw new ArithmeticException("Inverse does not exist."); } } public static int inverse32(int d) { // assert (d & 1) == 1; // int x = d + (((d + 1) & 4) << 1); // d.x == 1 mod 2**4 int x = d; // d.x == 1 mod 2**3 x *= 2 - d * x; // d.x == 1 mod 2**6 x *= 2 - d * x; // d.x == 1 mod 2**12 x *= 2 - d * x; // d.x == 1 mod 2**24 x *= 2 - d * x; // d.x == 1 mod 2**48 // assert d * x == 1; return x; } public static int modOddInverse(int[] m, int[] x, int[] z) { int len32 = m.length; // assert len32 > 0; // assert (m[0] & 1) != 0; // assert m[len32 - 1] != 0; int bits = (len32 << 5) - Integers.numberOfLeadingZeros(m[len32 - 1]); int len30 = (bits + 29) / 30; int[] t = new int[4]; int[] D = new int[len30]; int[] E = new int[len30]; int[] F = new int[len30]; int[] G = new int[len30]; int[] M = new int[len30]; E[0] = 1; encode30(bits, x, G); encode30(bits, m, M); System.arraycopy(M, 0, F, 0, len30); // We use the "half delta" variant here, with theta == delta - 1/2 int theta = 0; int m0Inv32 = inverse32(M[0]); int maxDivsteps = getMaximumHDDivsteps(bits); for (int divSteps = 0; divSteps < maxDivsteps; divSteps += 30) { theta = hddivsteps30(theta, F[0], G[0], t); updateDE30(len30, D, E, t, m0Inv32, M); updateFG30(len30, F, G, t); } int signF = F[len30 - 1] >> 31; cnegate30(len30, signF, F); /* * D is in the range (-2.M, M). First, conditionally add M if D is negative, to bring it * into the range (-M, M). Then normalize by conditionally negating (according to signF) * and/or then adding M, to bring it into the range [0, M). */ cnormalize30(len30, signF, D, M); decode30(bits, D, z); // assert 0 != Nat.lessThan(len32, z, m); return equalTo(len30, F, 1) & equalTo(len30, G, 0); } public static boolean modOddInverseVar(int[] m, int[] x, int[] z) { int len32 = m.length; // assert len32 > 0; // assert (m[0] & 1) != 0; // assert m[len32 - 1] != 0; int bits = (len32 << 5) - Integers.numberOfLeadingZeros(m[len32 - 1]); int len30 = (bits + 29) / 30; int clz = bits - Nat.getBitLength(len32, x); // assert clz >= 0; int[] t = new int[4]; int[] D = new int[len30]; int[] E = new int[len30]; int[] F = new int[len30]; int[] G = new int[len30]; int[] M = new int[len30]; E[0] = 1; encode30(bits, x, G); encode30(bits, m, M); System.arraycopy(M, 0, F, 0, len30); // We use the original safegcd here, with eta == 1 - delta // For shorter x, configure as if low zeros of x had been shifted away by divsteps int eta = -clz; int lenDE = len30, lenFG = len30; int m0Inv32 = inverse32(M[0]); int maxDivsteps = getMaximumDivsteps(bits); int divsteps = clz; while (!equalToVar(lenFG, G, 0)) { if (divsteps >= maxDivsteps) { return false; } divsteps += 30; eta = divsteps30Var(eta, F[0], G[0], t); updateDE30(lenDE, D, E, t, m0Inv32, M); updateFG30(lenFG, F, G, t); lenFG = trimFG30(lenFG, F, G); } int signF = F[lenFG - 1] >> 31; /* * D is in the range (-2.M, M). First, conditionally add M if D is negative, to bring it * into the range (-M, M). Then normalize by conditionally negating (according to signF) * and/or then adding M, to bring it into the range [0, M). */ int signD = D[lenDE - 1] >> 31; if (signD < 0) { signD = add30(lenDE, D, M); } if (signF < 0) { signD = negate30(lenDE, D); signF = negate30(lenFG, F); } // assert 0 == signF; if (!equalToVar(lenFG, F, 1)) { return false; } if (signD < 0) { signD = add30(lenDE, D, M); } // assert 0 == signD; decode30(bits, D, z); // assert !Nat.gte(len32, z, m); return true; } public static int modOddIsCoprime(int[] m, int[] x) { int len32 = m.length; // assert len32 > 0; // assert (m[0] & 1) != 0; // assert m[len32 - 1] != 0; int bits = (len32 << 5) - Integers.numberOfLeadingZeros(m[len32 - 1]); int len30 = (bits + 29) / 30; int[] t = new int[4]; int[] F = new int[len30]; int[] G = new int[len30]; int[] M = new int[len30]; encode30(bits, x, G); encode30(bits, m, M); System.arraycopy(M, 0, F, 0, len30); // We use the "half delta" variant here, with theta == delta - 1/2 int theta = 0; int maxDivsteps = getMaximumHDDivsteps(bits); for (int divSteps = 0; divSteps < maxDivsteps; divSteps += 30) { theta = hddivsteps30(theta, F[0], G[0], t); updateFG30(len30, F, G, t); } int signF = F[len30 - 1] >> 31; cnegate30(len30, signF, F); return equalTo(len30, F, 1) & equalTo(len30, G, 0); } public static boolean modOddIsCoprimeVar(int[] m, int[] x) { int len32 = m.length; // assert len32 > 0; // assert (m[0] & 1) != 0; // assert m[len32 - 1] != 0; int bits = (len32 << 5) - Integers.numberOfLeadingZeros(m[len32 - 1]); int len30 = (bits + 29) / 30; int clz = bits - Nat.getBitLength(len32, x); // assert clz >= 0; int[] t = new int[4]; int[] F = new int[len30]; int[] G = new int[len30]; int[] M = new int[len30]; encode30(bits, x, G); encode30(bits, m, M); System.arraycopy(M, 0, F, 0, len30); // We use the original safegcd here, with eta == 1 - delta // For shorter x, configure as if low zeros of x had been shifted away by divsteps int eta = -clz; int lenFG = len30; int maxDivsteps = getMaximumDivsteps(bits); int divsteps = clz; while (!equalToVar(lenFG, G, 0)) { if (divsteps >= maxDivsteps) { return false; } divsteps += 30; eta = divsteps30Var(eta, F[0], G[0], t); updateFG30(lenFG, F, G, t); lenFG = trimFG30(lenFG, F, G); } int signF = F[lenFG - 1] >> 31; if (signF < 0) { signF = negate30(lenFG, F); } // assert 0 == signF; return equalToVar(lenFG, F, 1); } public static int[] random(int[] p) { int len = p.length; Random rand = new Random(); int[] s = Nat.create(len); int m = p[len - 1]; m |= m >>> 1; m |= m >>> 2; m |= m >>> 4; m |= m >>> 8; m |= m >>> 16; do { for (int i = 0; i != len; i++) { s[i] = rand.nextInt(); } s[len - 1] &= m; } while (Nat.gte(len, s, p)); return s; } private static int add30(int len30, int[] D, int[] M) { // assert len30 > 0; // assert D.length >= len30; // assert M.length >= len30; int c = 0, last = len30 - 1; for (int i = 0; i < last; ++i) { c += D[i] + M[i]; D[i] = c & M30; c >>= 30; } c += D[last] + M[last]; D[last] = c; c >>= 30; return c; } private static void cnegate30(int len30, int cond, int[] D) { // assert len30 > 0; // assert D.length >= len30; int c = 0, last = len30 - 1; for (int i = 0; i < last; ++i) { c += (D[i] ^ cond) - cond; D[i] = c & M30; c >>= 30; } c += (D[last] ^ cond) - cond; D[last] = c; } private static void cnormalize30(int len30, int condNegate, int[] D, int[] M) { // assert len30 > 0; // assert D.length >= len30; // assert M.length >= len30; int last = len30 - 1; { int c = 0, condAdd = D[last] >> 31; for (int i = 0; i < last; ++i) { int di = D[i] + (M[i] & condAdd); di = (di ^ condNegate) - condNegate; c += di; D[i] = c & M30; c >>= 30; } { int di = D[last] + (M[last] & condAdd); di = (di ^ condNegate) - condNegate; c += di; D[last] = c; } } { int c = 0, condAdd = D[last] >> 31; for (int i = 0; i < last; ++i) { int di = D[i] + (M[i] & condAdd); c += di; D[i] = c & M30; c >>= 30; } { int di = D[last] + (M[last] & condAdd); c += di; D[last] = c; } // assert c >> 30 == 0; } } private static void decode30(int bits, int[] x, int[] z) { // assert bits > 0; // assert x != z; int avail = 0; long data = 0L; int xOff = 0, zOff = 0; while (bits > 0) { while (avail < Math.min(32, bits)) { data |= (long)x[xOff++] << avail; avail += 30; } z[zOff++] = (int)data; data >>>= 32; avail -= 32; bits -= 32; } } private static int divsteps30Var(int eta, int f0, int g0, int[] t) { int u = 1, v = 0, q = 0, r = 1; int f = f0, g = g0, m, w, x, y, z; int i = 30, limit, zeros; for (;;) { // Use a sentinel bit to count zeros only up to i. zeros = Integers.numberOfTrailingZeros(g | (-1 << i)); g >>= zeros; u <<= zeros; v <<= zeros; eta -= zeros; i -= zeros; if (i <= 0) { break; } // assert (f & 1) == 1; // assert (g & 1) == 1; // assert (u * f0 + v * g0) == f << (30 - i); // assert (q * f0 + r * g0) == g << (30 - i); if (eta <= 0) { eta = 2 - eta; x = f; f = g; g = -x; y = u; u = q; q = -y; z = v; v = r; r = -z; // Handle up to 6 divsteps at once, subject to eta and i. limit = eta > i ? i : eta; m = (-1 >>> (32 - limit)) & 63; w = (f * g * (f * f - 2)) & m; } else { // Handle up to 4 divsteps at once, subject to eta and i. limit = eta > i ? i : eta; m = (-1 >>> (32 - limit)) & 15; w = f + (((f + 1) & 4) << 1); w = (w * -g) & m; } g += f * w; q += u * w; r += v * w; // assert (g & m) == 0; } t[0] = u; t[1] = v; t[2] = q; t[3] = r; return eta; } private static void encode30(int bits, int[] x, int[] z) { // assert bits > 0; // assert x != z; int avail = 0; long data = 0L; int xOff = 0, zOff = 0; while (bits > 0) { if (avail < Math.min(30, bits)) { data |= (x[xOff++] & M32L) << avail; avail += 32; } z[zOff++] = (int)data & M30; data >>>= 30; avail -= 30; bits -= 30; } } private static int equalTo(int len, int[] x, int y) { int d = x[0] ^ y; for (int i = 1; i < len; ++i) { d |= x[i]; } d = (d >>> 1) | (d & 1); return (d - 1) >> 31; } private static boolean equalToVar(int len, int[] x, int y) { int d = x[0] ^ y; if (d != 0) return false; for (int i = 1; i < len; ++i) { d |= x[i]; } return d == 0; } private static int getMaximumDivsteps(int bits) { //return (49 * bits + (bits < 46 ? 80 : 47)) / 17; return (int)((188898L * bits + (bits < 46 ? 308405 : 181188)) >>> 16); } private static int getMaximumHDDivsteps(int bits) { //return (int)((45907L * bits + 30179) / 19929); return (int)((150964L * bits + 99243) >>> 16); } private static int hddivsteps30(int theta, int f0, int g0, int[] t) { int u = 1 << 30, v = 0, q = 0, r = 1 << 30; int f = f0, g = g0; for (int i = 0; i < 30; ++i) { // assert (f & 1) == 1; // assert ((u >> (30 - i)) * f0 + (v >> (30 - i)) * g0) == f << i; // assert ((q >> (30 - i)) * f0 + (r >> (30 - i)) * g0) == g << i; int c1 = theta >> 31; int c2 = -(g & 1); int x = f ^ c1; int y = u ^ c1; int z = v ^ c1; g -= x & c2; q -= y & c2; r -= z & c2; int c3 = c2 & ~c1; theta = (theta ^ c3) + 1; f += g & c3; u += q & c3; v += r & c3; g >>= 1; q >>= 1; r >>= 1; } t[0] = u; t[1] = v; t[2] = q; t[3] = r; return theta; } private static int negate30(int len30, int[] D) { // assert len30 > 0; // assert D.length >= len30; int c = 0, last = len30 - 1; for (int i = 0; i < last; ++i) { c -= D[i]; D[i] = c & M30; c >>= 30; } c -= D[last]; D[last] = c; c >>= 30; return c; } private static int trimFG30(int len30, int[] F, int[] G) { // assert len30 > 0; // assert F.length >= len30; // assert G.length >= len30; int fn = F[len30 - 1]; int gn = G[len30 - 1]; int cond = (len30 - 2) >> 31; cond |= fn ^ (fn >> 31); cond |= gn ^ (gn >> 31); if (cond == 0) { F[len30 - 2] |= fn << 30; G[len30 - 2] |= gn << 30; --len30; } return len30; } private static void updateDE30(int len30, int[] D, int[] E, int[] t, int m0Inv32, int[] M) { // assert len30 > 0; // assert D.length >= len30; // assert E.length >= len30; // assert M.length >= len30; // assert m0Inv32 * M[0] == 1; final int u = t[0], v = t[1], q = t[2], r = t[3]; int di, ei, i, md, me, mi, sd, se; long cd, ce; /* * We accept D (E) in the range (-2.M, M) and conceptually add the modulus to the input * value if it is initially negative. Instead of adding it explicitly, we add u and/or v (q * and/or r) to md (me). */ sd = D[len30 - 1] >> 31; se = E[len30 - 1] >> 31; md = (u & sd) + (v & se); me = (q & sd) + (r & se); mi = M[0]; di = D[0]; ei = E[0]; cd = (long)u * di + (long)v * ei; ce = (long)q * di + (long)r * ei; /* * Subtract from md/me an extra term in the range [0, 2^30) such that the low 30 bits of the * intermediate D/E values will be 0, allowing clean division by 2^30. The final D/E are * thus in the range (-2.M, M), consistent with the input constraint. */ md -= (m0Inv32 * (int)cd + md) & M30; me -= (m0Inv32 * (int)ce + me) & M30; cd += (long)mi * md; ce += (long)mi * me; // assert ((int)cd & M30) == 0; // assert ((int)ce & M30) == 0; cd >>= 30; ce >>= 30; for (i = 1; i < len30; ++i) { mi = M[i]; di = D[i]; ei = E[i]; cd += (long)u * di + (long)v * ei + (long)mi * md; ce += (long)q * di + (long)r * ei + (long)mi * me; D[i - 1] = (int)cd & M30; cd >>= 30; E[i - 1] = (int)ce & M30; ce >>= 30; } D[len30 - 1] = (int)cd; E[len30 - 1] = (int)ce; } private static void updateFG30(int len30, int[] F, int[] G, int[] t) { // assert len30 > 0; // assert F.length >= len30; // assert G.length >= len30; final int u = t[0], v = t[1], q = t[2], r = t[3]; int fi, gi, i; long cf, cg; fi = F[0]; gi = G[0]; cf = (long)u * fi + (long)v * gi; cg = (long)q * fi + (long)r * gi; // assert ((int)cf & M30) == 0; // assert ((int)cg & M30) == 0; cf >>= 30; cg >>= 30; for (i = 1; i < len30; ++i) { fi = F[i]; gi = G[i]; cf += (long)u * fi + (long)v * gi; cg += (long)q * fi + (long)r * gi; F[i - 1] = (int)cf & M30; cf >>= 30; G[i - 1] = (int)cg & M30; cg >>= 30; } F[len30 - 1] = (int)cf; G[len30 - 1] = (int)cg; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy