org.bouncycastle.pqc.crypto.falcon.FalconCommon Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.pqc.crypto.falcon;
class FalconCommon
{
FalconCommon()
{
}
/* see inner.h */
void hash_to_point_vartime(SHAKE256 sc, short[] srcx, int x, int logn)
{
/*
* This is the straightforward per-the-spec implementation. It
* is not constant-time, thus it might reveal information on the
* plaintext (at least, enough to check the plaintext against a
* list of potential plaintexts) in a scenario where the
* attacker does not have access to the signature value or to
* the public key, but knows the nonce (without knowledge of the
* nonce, the hashed output cannot be matched against potential
* plaintexts).
*/
int n;
n = 1 << logn;
while (n > 0)
{
byte[] buf = new byte[2];
int w; // unsigned
// inner_shake256_extract(sc, (void *)buf, sizeof buf);
sc.inner_shake256_extract(buf, 0, 2);
w = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff);
if (w < 61445)
{
while (w >= 12289)
{
w -= 12289;
}
srcx[x++] = (short)w;
n--;
}
}
}
void hash_to_point_ct(
SHAKE256 sc,
short[] srcx, int x, int logn, short[] srctmp, int tmp)
{
/*
* Each 16-bit sample is a value in 0..65535. The value is
* kept if it falls in 0..61444 (because 61445 = 5*12289)
* and rejected otherwise; thus, each sample has probability
* about 0.93758 of being selected.
*
* We want to oversample enough to be sure that we will
* have enough values with probability at least 1 - 2^(-256).
* Depending on degree N, this leads to the following
* required oversampling:
*
* logn n oversampling
* 1 2 65
* 2 4 67
* 3 8 71
* 4 16 77
* 5 32 86
* 6 64 100
* 7 128 122
* 8 256 154
* 9 512 205
* 10 1024 287
*
* If logn >= 7, then the provided temporary buffer is large
* enough. Otherwise, we use a stack buffer of 63 entries
* (i.e. 126 bytes) for the values that do not fit in tmp[].
*/
short overtab[] = {
0, /* unused */
65,
67,
71,
77,
86,
100,
122,
154,
205,
287
};
int n, n2, u, m, p, over;
int tt1;
short[] tt2 = new short[63];
/*
* We first generate m 16-bit value. Values 0..n-1 go to x[].
* Values n..2*n-1 go to tt1[]. Values 2*n and later go to tt2[].
* We also reduce modulo q the values; rejected values are set
* to 0xFFFF.
*/
n = 1 << logn;
n2 = n << 1;
over = overtab[logn];
m = n + over;
tt1 = tmp;
for (u = 0; u < m; u++)
{
byte[] buf = new byte[2];
int w, wr;
sc.inner_shake256_extract(buf, 0, buf.length);
w = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff);
wr = w - (24578 & (((w - 24578) >>> 31) - 1));
wr = wr - (24578 & (((wr - 24578) >>> 31) - 1));
wr = wr - (12289 & (((wr - 12289) >>> 31) - 1));
wr |= ((w - 61445) >>> 31) - 1;
if (u < n)
{
srcx[x + u] = (short)wr;
}
else if (u < n2)
{
srctmp[tt1 + u - n] = (short)wr;
}
else
{
tt2[u - n2] = (short)wr;
}
}
/*
* Now we must "squeeze out" the invalid values. We do this in
* a logarithmic sequence of passes; each pass computes where a
* value should go, and moves it down by 'p' slots if necessary,
* where 'p' uses an increasing powers-of-two scale. It can be
* shown that in all cases where the loop decides that a value
* has to be moved down by p slots, the destination slot is
* "free" (i.e. contains an invalid value).
*/
for (p = 1; p <= over; p <<= 1)
{
int v;
/*
* In the loop below:
*
* - v contains the index of the final destination of
* the value; it is recomputed dynamically based on
* whether values are valid or not.
*
* - u is the index of the value we consider ("source");
* its address is s.
*
* - The loop may swap the value with the one at index
* u-p. The address of the swap destination is d.
*/
v = 0;
for (u = 0; u < m; u++)
{
int s, d;
int sp, dp;
int j, sv, dv, mk;
if (u < n)
{
sp = 1;
s = x + u;
sv = srcx[s];
}
else if (u < n2)
{
sp = 2;
s = tt1 + u - n;
sv = srctmp[s];
}
else
{
sp = 3;
s = u - n2;
sv = tt2[s];
}
/*
* The value in sv should ultimately go to
* address v, i.e. jump back by u-v slots.
*/
j = u - v;
/*
* We increment v for the next iteration, but
* only if the source value is valid. The mask
* 'mk' is -1 if the value is valid, 0 otherwise,
* so we _subtract_ mk.
*/
mk = (sv >>> 15) - 1;
v -= mk;
/*
* In this loop we consider jumps by p slots; if
* u < p then there is nothing more to do.
*/
if (u < p)
{
continue;
}
/*
* Destination for the swap: value at address u-p.
*/
if ((u - p) < n)
{
dp = 1;
d = x + u - p;
dv = srcx[d];
}
else if ((u - p) < n2)
{
dp = 2;
d = tt1 + (u - p) - n;
dv = srctmp[d];
}
else
{
dp = 3;
d = (u - p) - n2;
dv = tt2[d];
}
/*
* The swap should be performed only if the source
* is valid AND the jump j has its 'p' bit set.
*/
mk &= -(((j & p) + 0x1FF) >> 9);
if (sp == 1)
{
srcx[s] = (short)(sv ^ (mk & (sv ^ dv)));
}
else if (sp == 2)
{
srctmp[s] = (short)(sv ^ (mk & (sv ^ dv)));
}
else
{
tt2[s] = (short)(sv ^ (mk & (sv ^ dv)));
}
if (dp == 1)
{
srcx[d] = (short)(dv ^ (mk & (sv ^ dv)));
}
else if (dp == 2)
{
srctmp[d] = (short)(dv ^ (mk & (sv ^ dv)));
}
else
{
tt2[d] = (short)(dv ^ (mk & (sv ^ dv)));
}
}
}
}
/*
* Acceptance bound for the (squared) l2-norm of the signature depends
* on the degree. This array is indexed by logn (1 to 10). These bounds
* are _inclusive_ (they are equal to floor(beta^2)).
*/
static final int l2bound[] = {
0, /* unused */
101498,
208714,
428865,
892039,
1852696,
3842630,
7959734,
16468416,
34034726,
70265242
};
/* see inner.h */
int is_short(
short[] srcs1, int s1, short[] srcs2, int s2, int logn)
{
/*
* We use the l2-norm. Code below uses only 32-bit operations to
* compute the square of the norm with saturation to 2^32-1 if
* the value exceeds 2^31-1.
*/
int n, u;
int s, ng;
n = 1 << logn;
s = 0;
ng = 0;
for (u = 0; u < n; u++)
{
int z;
z = srcs1[s1 + u];
s += (z * z);
ng |= s;
z = srcs2[s2 + u];
s += (z * z);
ng |= s;
}
s |= -(ng >>> 31);
return (s & 0xffffffffL) <= l2bound[logn] ? 1 : 0;
}
/* see inner.h */
int is_short_half(
int sqn, short[] srcs2, int s2, int logn)
{
int n, u;
int ng;
n = 1 << logn;
ng = -(sqn >>> 31);
for (u = 0; u < n; u++)
{
int z;
z = srcs2[s2 + u];
sqn += (z * z);
ng |= sqn;
}
sqn |= -(ng >>> 31);
return ((sqn & 0xffffffffL) <= l2bound[logn]) ? 1 : 0;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy