org.bouncycastle.pqc.crypto.hqc.FastFourierTransform Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.pqc.crypto.hqc;
class FastFourierTransform
{
static void fastFourierTransform(int[] output, int[] elements, int noCoefs, int fft)
{
int m = HQCParameters.PARAM_M;
int mSize = 1 << (HQCParameters.PARAM_M - 1);
int fftSize = 1 << fft;
int[] f0 = new int[fftSize];
int[] f1 = new int[fftSize];
int[] deltas = new int[m - 1];
int[] u = new int[mSize];
int[] v = new int[mSize];
// Step 1: Compute betas
int[] betas = new int[m - 1];
int[] betaSum = new int[mSize];
computeFFTBetas(betas, m);
computeSubsetSum(betaSum, betas, m - 1);
// Step 2: Compute radix
computeRadix(f0, f1, elements, fft, fft);
// Step 3: Compute deltas
for (int i = 0; i < m - 1; i++)
{
deltas[i] = GFCalculator.mult(betas[i], betas[i]) ^ betas[i];
}
// Step 5:
computeFFTRec(u, f0, (noCoefs + 1) / 2, m - 1, fft - 1, deltas, fft, m);
computeFFTRec(v, f1, noCoefs / 2, m - 1, fft - 1, deltas, fft, m);
// Step 6.7
int k = 1;
k = 1 << (m - 1);
System.arraycopy(v, 0, output, k, k);
output[0] = u[0];
output[k] ^= u[0];
for (int i = 1; i < k; i++)
{
output[i] = u[i] ^ GFCalculator.mult(betaSum[i], v[i]);
output[k + i] ^= output[i];
}
}
static void computeFFTBetas(int[] betas, int m)
{
for (int i = 0; i < m - 1; i++)
{
betas[i] = 1 << (m - 1 - i);
}
}
static void computeSubsetSum(int[] subsetSum, int[] set, int size)
{
subsetSum[0] = 0;
for (int i = 0; i < size; i++)
{
for (int j = 0; j < (1 << i); j++)
{
subsetSum[(1 << i) + j] = set[i] ^ subsetSum[j];
}
}
}
static void computeRadix(int[] f0, int[] f1, int[] f, int mf, int fft)
{
switch (mf)
{
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];
f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;
case 1:
f0[0] = f[0];
f1[0] = f[1];
return;
default:
computeRadixBig(f0, f1, f, mf, fft);
break;
}
}
static void computeRadixBig(int[] f0, int[] f1, int[] f, int mf, int fft)
{
int n = 1;
n <<= (mf - 2);
int fftSize = 1 << (fft - 2);
int Q[] = new int[2 * fftSize];
int R[] = new int[2 * fftSize];
int Q0[] = new int[fftSize];
int Q1[] = new int[fftSize];
int R0[] = new int[fftSize];
int R1[] = new int[fftSize];
Utils.copyBytes(f, 3 * n, Q, 0, 2 * n);
Utils.copyBytes(f, 3 * n, Q, n, 2 * n);
Utils.copyBytes(f, 0, R, 0, 4 * n);
for (int i = 0; i < n; ++i)
{
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
computeRadix(Q0, Q1, Q, mf - 1, fft);
computeRadix(R0, R1, R, mf - 1, fft);
Utils.copyBytes(R0, 0, f0, 0, 2 * n);
Utils.copyBytes(Q0, 0, f0, n, 2 * n);
Utils.copyBytes(R1, 0, f1, 0, 2 * n);
Utils.copyBytes(Q1, 0, f1, n, 2 * n);
}
static void computeFFTRec(int[] output, int[] func, int noCoeffs, int noOfBetas, int noCoeffsPlus, int[] betaSet, int fft, int m)
{
int fftSize = 1 << (fft - 2);
int mSize = 1 << (m - 2);
int[] fx0 = new int[fftSize];
int[] fx1 = new int[fftSize];
int[] gammaSet = new int[m - 2];
int[] deltaSet = new int[m - 2];
int k = 1;
int[] gammaSumSet = new int[mSize];
int[] uSet = new int[mSize];
int[] vSet = new int[mSize];
int[] tempSet = new int[m - fft + 1];
int x = 0;
if (noCoeffsPlus == 1)
{
for (int i = 0; i < noOfBetas; i++)
{
tempSet[i] = GFCalculator.mult(betaSet[i], func[1]);
}
output[0] = func[0];
x = 1;
for (int j = 0; j < noOfBetas; j++)
{
for (int t = 0; t < x; t++)
{
output[x + t] = output[t] ^ tempSet[j];
}
x <<= 1;
}
return;
}
if (betaSet[noOfBetas - 1] != 1)
{
int betaMPow = 1;
x = 1;
x <<= noCoeffsPlus;
for (int i = 1; i < x; i++)
{
betaMPow = GFCalculator.mult(betaMPow, betaSet[noOfBetas - 1]);
func[i] = GFCalculator.mult(betaMPow, func[i]);
}
}
computeRadix(fx0, fx1, func, noCoeffsPlus, fft);
for (int i = 0; i < noOfBetas - 1; i++)
{
gammaSet[i] = GFCalculator.mult(betaSet[i], GFCalculator.inverse(betaSet[noOfBetas - 1]));
deltaSet[i] = GFCalculator.mult(gammaSet[i], gammaSet[i]) ^ gammaSet[i];
}
computeSubsetSum(gammaSumSet, gammaSet, noOfBetas - 1);
computeFFTRec(uSet, fx0, (noCoeffs + 1) / 2, noOfBetas - 1, noCoeffsPlus - 1, deltaSet, fft, m);
k = 1;
k <<= ((noOfBetas - 1) & 0xf);
if (noCoeffs <= 3)
{
output[0] = uSet[0];
output[k] = uSet[0] ^ fx1[0];
for (int i = 1; i < k; i++)
{
output[i] = uSet[i] ^ GFCalculator.mult(gammaSumSet[i], fx1[0]);
output[k + i] = output[i] ^ fx1[0];
}
}
else
{
computeFFTRec(vSet, fx1, noCoeffs / 2, noOfBetas - 1, noCoeffsPlus - 1, deltaSet, fft, m);
// int[] tmp = new int[3*k];
// System.arraycopy(output, 0, tmp, 0 , output.length);
// System.arraycopy(vSet, 0, tmp, k , 2*k);
System.arraycopy(vSet, 0, output, k, k);
output[0] = uSet[0];
output[k] ^= uSet[0];
for (int i = 1; i < k; i++)
{
output[i] = uSet[i] ^ GFCalculator.mult(gammaSumSet[i], vSet[i]);
output[k + i] ^= output[i];
}
}
}
static void fastFourierTransformGetError(byte[] errorSet, int[] input, int mSize, int[] logArrays)
{
int m = HQCParameters.PARAM_M;
int gfMulOrder = HQCParameters.GF_MUL_ORDER;
int[] gammaSet = new int[m - 1];
int[] gammaSumSet = new int[mSize];
int k = mSize;
computeFFTBetas(gammaSet, m);
computeSubsetSum(gammaSumSet, gammaSet, m - 1);
errorSet[0] ^= 1 ^ Utils.toUnsigned16Bits(-input[0] >> 15);
errorSet[0] ^= 1 ^ Utils.toUnsigned16Bits(-input[k] >> 15);
for (int i = 1; i < k; i++)
{
int tmp = gfMulOrder - logArrays[gammaSumSet[i]];
errorSet[tmp] ^= 1 ^ Math.abs(-input[i] >> 15);
tmp = gfMulOrder - logArrays[gammaSumSet[i] ^ 1];
errorSet[tmp] ^= 1 ^ Math.abs(-input[k + i] >> 15);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy