org.bouncycastle.pqc.crypto.ntru.NTRUOWCPA Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.pqc.crypto.ntru;
import org.bouncycastle.pqc.math.ntru.HPSPolynomial;
import org.bouncycastle.pqc.math.ntru.Polynomial;
import org.bouncycastle.pqc.math.ntru.parameters.NTRUHPSParameterSet;
import org.bouncycastle.pqc.math.ntru.parameters.NTRUHRSSParameterSet;
import org.bouncycastle.pqc.math.ntru.parameters.NTRUParameterSet;
import org.bouncycastle.util.Arrays;
/**
* An OW-CPA secure deterministic public key encryption scheme (DPKE).
*
* @see NTRU specification section 1.11
*/
class NTRUOWCPA
{
private final NTRUParameterSet params;
private final NTRUSampling sampling;
public NTRUOWCPA(NTRUParameterSet params)
{
this.params = params;
this.sampling = new NTRUSampling(params);
}
/**
* Generate a DPKE key pair.
*
* @param seed a random byte array
* @return DPKE key pair
* @see NTRU specification section 1.11.1
*/
public OWCPAKeyPair keypair(byte[] seed)
{
byte[] publicKey;
byte[] privateKey = new byte[this.params.owcpaSecretKeyBytes()];
int n = this.params.n();
int q = this.params.q();
int i;
PolynomialPair pair;
Polynomial x3, x4, x5;
x3 = this.params.createPolynomial();
x4 = this.params.createPolynomial();
x5 = this.params.createPolynomial();
Polynomial f, g, invfMod3 = x3;
Polynomial gf = x3, invgf = x4, tmp = x5;
Polynomial invh = x3, h = x3;
pair = sampling.sampleFg(seed);
f = pair.f();
g = pair.g();
invfMod3.s3Inv(f);
byte[] fs3ToBytes = f.s3ToBytes(params.owcpaMsgBytes());
System.arraycopy(fs3ToBytes, 0, privateKey, 0, fs3ToBytes.length);
byte[] s3Res = invfMod3.s3ToBytes(privateKey.length - this.params.packTrinaryBytes());
System.arraycopy(s3Res, 0, privateKey, this.params.packTrinaryBytes(), s3Res.length);
f.z3ToZq();
g.z3ToZq();
if (this.params instanceof NTRUHRSSParameterSet)
{
/* g = 3*(x-1)*g */
for (i = n - 1; i > 0; i--)
{
g.coeffs[i] = (short)(3 * (g.coeffs[i - 1] - g.coeffs[i]));
}
g.coeffs[0] = (short)-(3 * g.coeffs[0]);
}
else
{
for (i = 0; i < n; i++)
{
g.coeffs[i] = (short)(3 * g.coeffs[i]);
}
}
gf.rqMul(g, f);
invgf.rqInv(gf);
tmp.rqMul(invgf, f);
invh.sqMul(tmp, f);
byte[] sqRes = invh.sqToBytes(privateKey.length - 2 * this.params.packTrinaryBytes());
System.arraycopy(sqRes, 0, privateKey, 2 * this.params.packTrinaryBytes(), sqRes.length);
tmp.rqMul(invgf, g);
h.rqMul(tmp, g);
publicKey = h.rqSumZeroToBytes(this.params.owcpaPublicKeyBytes());
return new OWCPAKeyPair(publicKey, privateKey);
}
/**
* DPKE encryption.
*
* @param r
* @param m
* @param publicKey
* @return DPKE ciphertext
* @see NTRU specification section 1.11.3
*/
public byte[] encrypt(Polynomial r, Polynomial m, byte[] publicKey)
{
int i;
Polynomial x1 = params.createPolynomial(), x2 = params.createPolynomial();
Polynomial h = x1, liftm = x1;
Polynomial ct = x2;
h.rqSumZeroFromBytes(publicKey);
ct.rqMul(r, h);
liftm.lift(m);
for (i = 0; i < params.n(); i++)
{
ct.coeffs[i] += liftm.coeffs[i];
}
return ct.rqSumZeroToBytes(params.ntruCiphertextBytes());
}
/**
* DPKE decryption.
*
* @param ciphertext
* @param privateKey
* @return an instance of {@link OWCPADecryptResult} containing {@code packed_rm} and fail flag
* @see NTRU specification section 1.11.4
*/
public OWCPADecryptResult decrypt(byte[] ciphertext, byte[] privateKey)
{
byte[] sk = privateKey;
byte[] rm = new byte[params.owcpaMsgBytes()];
int i, fail;
Polynomial x1 = params.createPolynomial();
Polynomial x2 = params.createPolynomial();
Polynomial x3 = params.createPolynomial();
Polynomial x4 = params.createPolynomial();
Polynomial c = x1, f = x2, cf = x3;
Polynomial mf = x2, finv3 = x3, m = x4;
Polynomial liftm = x2, invh = x3, r = x4;
Polynomial b = x1;
c.rqSumZeroFromBytes(ciphertext);
f.s3FromBytes(sk);
f.z3ToZq();
cf.rqMul(c, f);
mf.rqToS3(cf);
finv3.s3FromBytes(Arrays.copyOfRange(sk, params.packTrinaryBytes(), sk.length));
m.s3Mul(mf, finv3);
byte[] arr1 = m.s3ToBytes(rm.length - params.packTrinaryBytes());
fail = 0;
/* Check that the unused bits of the last byte of the ciphertext are zero */
fail |= checkCiphertext(ciphertext);
/* For the IND-CCA2 KEM we must ensure that c = Enc(h, (r,m)). */
/* We can avoid re-computing r*h + Lift(m) as long as we check that */
/* r (defined as b/h mod (q, Phi_n)) and m are in the message space. */
/* (m can take any value in S3 in NTRU_HRSS) */
if (params instanceof NTRUHPSParameterSet)
{
fail |= checkM((HPSPolynomial)m);
}
/* b = c - Lift(m) mod (q, x^n - 1) */
liftm.lift(m);
for (i = 0; i < params.n(); i++)
{
b.coeffs[i] = (short)(c.coeffs[i] - liftm.coeffs[i]);
}
/* r = b / h mod (q, Phi_n) */
invh.sqFromBytes(Arrays.copyOfRange(sk, 2 * params.packTrinaryBytes(), sk.length));
r.sqMul(b, invh);
/* NOTE: Our definition of r as b/h mod (q, Phi_n) follows Figure 4 of */
/* [Sch18] https://eprint.iacr.org/2018/1174/20181203:032458. */
/* This differs from Figure 10 of Saito--Xagawa--Yamakawa */
/* [SXY17] https://eprint.iacr.org/2017/1005/20180516:055500 */
/* where r gets a final reduction modulo p. */
/* We need this change to use Proposition 1 of [Sch18]. */
/* Proposition 1 of [Sch18] shows that re-encryption with (r,m) yields c. */
/* if and only if fail==0 after the following call to owcpa_check_r */
/* The procedure given in Fig. 8 of [Sch18] can be skipped because we have */
/* c(1) = 0 due to the use of poly_Rq_sum_zero_{to,from}bytes. */
fail |= checkR(r);
r.trinaryZqToZ3();
byte[] arr2 = r.s3ToBytes(params.owcpaMsgBytes());
System.arraycopy(arr2, 0, rm, 0, arr2.length);
System.arraycopy(arr1, 0, rm, params.packTrinaryBytes(), arr1.length);
return new OWCPADecryptResult(rm, fail);
}
private int checkCiphertext(byte[] ciphertext)
{
/* A ciphertext is log2(q)*(n-1) bits packed into bytes. */
/* Check that any unused bits of the final byte are zero. */
short t;
t = ciphertext[params.ntruCiphertextBytes() - 1];
t &= 0xff << (8 - (7 & (params.logQ() * params.packDegree())));
/* We have 0 <= t < 256 */
/* Return 0 on success (t=0), 1 on failure */
return 1 & ((~t + 1) >>> 15);
}
private int checkR(Polynomial r)
{
/* A valid r has coefficients in {0,1,q-1} and has r[N-1] = 0 */
/* Note: We may assume that 0 <= r[i] <= q-1 for all i */
int i;
int t = 0; // unsigned
short c; // unsigned
for (i = 0; i < params.n() - 1; i++)
{
c = r.coeffs[i];
t |= (c + 1) & (params.q() - 4); /* 0 iff c is in {-1,0,1,2} */
t |= (c + 2) & 4; /* 1 if c = 2, 0 if c is in {-1,0,1} */
}
t |= r.coeffs[params.n() - 1];/* Coefficient n-1 must be zero */
/* We have 0 <= t < 2^16. */
/* Return 0 on success (t=0), 1 on failure */
return (1 & ((~t + 1) >>> 31));
}
/**
* Check that m is in message space, i.e.
* (1) |{i : m[i] = 1}| = |{i : m[i] = 2}|, and
* (2) |{i : m[i] != 0}| = NTRU_WEIGHT.
* Note: We may assume that m has coefficients in {0,1,2}.
*
* @param m
* @return 0 on success (t=0), 1 on failure
*/
private int checkM(HPSPolynomial m)
{
int i;
int t = 0; // unsigned
short ps = 0; // unsigned
short ms = 0; // unsigned
for (i = 0; i < params.n() - 1; i++)
{
ps += m.coeffs[i] & 1;
ms += m.coeffs[i] & 2;
}
t |= ps ^ (ms >>> 1);
t |= ms ^ ((NTRUHPSParameterSet)params).weight();
/* We have 0 <= t < 2^16. */
/* Return 0 on success (t=0), 1 on failure */
return (1 & ((~t + 1) >>> 31));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy