org.bouncycastle.pqc.math.ntru.HRSSPolynomial Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk14 Show documentation
Show all versions of bcprov-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.pqc.math.ntru;
import org.bouncycastle.pqc.math.ntru.parameters.NTRUHRSSParameterSet;
public class HRSSPolynomial
extends Polynomial
{
public HRSSPolynomial(NTRUHRSSParameterSet params)
{
super(params);
}
public byte[] sqToBytes(int len)
{
byte[] r = new byte[len];
int i, j;
short[] t = new short[8];
for (i = 0; i < params.packDegree() / 8; i++)
{
for (j = 0; j < 8; j++)
{
t[j] = (short)modQ(this.coeffs[8 * i + j] & 0xffff, params.q());
}
r[13 * i + 0] = (byte)(t[0] & 0xff);
r[13 * i + 1] = (byte)((t[0] >>> 8) | ((t[1] & 0x07) << 5));
r[13 * i + 2] = (byte)((t[1] >>> 3) & 0xff);
r[13 * i + 3] = (byte)((t[1] >>> 11) | ((t[2] & 0x3f) << 2));
r[13 * i + 4] = (byte)((t[2] >>> 6) | ((t[3] & 0x01) << 7));
r[13 * i + 5] = (byte)((t[3] >>> 1) & 0xff);
r[13 * i + 6] = (byte)((t[3] >>> 9) | ((t[4] & 0x0f) << 4));
r[13 * i + 7] = (byte)((t[4] >>> 4) & 0xff);
r[13 * i + 8] = (byte)((t[4] >>> 12) | ((t[5] & 0x7f) << 1));
r[13 * i + 9] = (byte)((t[5] >>> 7) | ((t[6] & 0x03) << 6));
r[13 * i + 10] = (byte)((t[6] >>> 2) & 0xff);
r[13 * i + 11] = (byte)((t[6] >>> 10) | ((t[7] & 0x1f) << 3));
r[13 * i + 12] = (byte)((t[7] >>> 5));
}
for (j = 0; j < params.packDegree() - 8 * i; j++)
{
t[j] = (short)modQ(this.coeffs[8 * i + j] & 0xffff, params.q());
}
for (; j < 8; j++)
{
t[j] = 0;
}
switch (params.packDegree() - 8 * (params.packDegree() / 8))
{
case 4:
{
r[13 * i + 0] = (byte)(t[0] & 0xff);
r[13 * i + 1] = (byte)((t[0] >>> 8) | ((t[1] & 0x07) << 5));
r[13 * i + 2] = (byte)((t[1] >>> 3) & 0xff);
r[13 * i + 3] = (byte)((t[1] >>> 11) | ((t[2] & 0x3f) << 2));
r[13 * i + 4] = (byte)((t[2] >>> 6) | ((t[3] & 0x01) << 7));
r[13 * i + 5] = (byte)((t[3] >>> 1) & 0xff);
r[13 * i + 6] = (byte)((t[3] >>> 9) | ((t[4] & 0x0f) << 4));
}
case 2:
{
r[13 * i + 0] = (byte)(t[0] & 0xff);
r[13 * i + 1] = (byte)((t[0] >>> 8) | ((t[1] & 0x07) << 5));
r[13 * i + 2] = (byte)((t[1] >>> 3) & 0xff);
r[13 * i + 3] = (byte)((t[1] >>> 11) | ((t[2] & 0x3f) << 2));
}
}
return r;
}
public void sqFromBytes(byte[] a)
{
int i;
for (i = 0; i < params.packDegree() / 8; i++)
{
this.coeffs[8 * i + 0] = (short)((a[13 * i + 0] & 0xff) | (((short)(a[13 * i + 1] & 0xff) & 0x1f) << 8));
this.coeffs[8 * i + 1] = (short)(((a[13 * i + 1] & 0xff) >>> 5) | (((short)(a[13 * i + 2] & 0xff)) << 3) | (((short)(a[13 * i + 3] & 0xff) & 0x03) << 11));
this.coeffs[8 * i + 2] = (short)(((a[13 * i + 3] & 0xff) >>> 2) | (((short)(a[13 * i + 4] & 0xff) & 0x7f) << 6));
this.coeffs[8 * i + 3] = (short)(((a[13 * i + 4] & 0xff) >>> 7) | (((short)(a[13 * i + 5] & 0xff)) << 1) | (((short)(a[13 * i + 6] & 0xff) & 0x0f) << 9));
this.coeffs[8 * i + 4] = (short)(((a[13 * i + 6] & 0xff) >>> 4) | (((short)(a[13 * i + 7] & 0xff)) << 4) | (((short)(a[13 * i + 8] & 0xff) & 0x01) << 12));
this.coeffs[8 * i + 5] = (short)(((a[13 * i + 8] & 0xff) >>> 1) | (((short)(a[13 * i + 9] & 0xff) & 0x3f) << 7));
this.coeffs[8 * i + 6] = (short)(((a[13 * i + 9] & 0xff) >>> 6) | (((short)(a[13 * i + 10] & 0xff)) << 2) | (((short)(a[13 * i + 11] & 0xff) & 0x07) << 10));
this.coeffs[8 * i + 7] = (short)(((a[13 * i + 11] & 0xff) >>> 3) | (((short)(a[13 * i + 12] & 0xff)) << 5));
}
switch (params.packDegree() & 0x07)
{
case 4:
{
this.coeffs[8 * i + 0] = (short)((a[13 * i + 0] & 0xff) | (((short)(a[13 * i + 1] & 0xff) & 0x1f) << 8));
this.coeffs[8 * i + 1] = (short)(((a[13 * i + 1] & 0xff) >>> 5) | (((short)(a[13 * i + 2] & 0xff)) << 3) | (((short)(a[13 * i + 3] & 0xff) & 0x03) << 11));
this.coeffs[8 * i + 2] = (short)(((a[13 * i + 3] & 0xff) >>> 2) | (((short)(a[13 * i + 4] & 0xff) & 0x7f) << 6));
this.coeffs[8 * i + 3] = (short)(((a[13 * i + 4] & 0xff) >>> 7) | (((short)(a[13 * i + 5] & 0xff)) << 1) | (((short)(a[13 * i + 6] & 0xff) & 0x0f) << 9));
break;
}
case 2:
{
this.coeffs[8 * i + 0] = (short)((a[13 * i + 0] & 0xff) | (((short)(a[13 * i + 1] & 0xff) & 0x1f) << 8));
this.coeffs[8 * i + 1] = (short)(((a[13 * i + 1] & 0xff) >>> 5) | (((short)(a[13 * i + 2] & 0xff)) << 3) | (((short)(a[13 * i + 3] & 0xff) & 0x03) << 11));
break;
}
}
this.coeffs[params.n() - 1] = 0;
}
public void lift(Polynomial a)
{
int n = this.coeffs.length;
/* NOTE: Assumes input is in {0,1,2}^N */
/* Produces output in [0,Q-1]^N */
int i;
Polynomial b = this.params.createPolynomial();
short t, zj;
/* Define z by = delta_{i,0} mod 3: */
/* t = -1/N mod p = -N mod 3 */
/* z[0] = 2 - t mod 3 */
/* z[1] = 0 mod 3 */
/* z[j] = z[j-1] + t mod 3 */
/* We'll compute b = a/(x-1) mod (3, Phi) using */
/* b[0] = , b[1] = , b[2] = */
/* b[i] = b[i-3] - (a[i] + a[i-1] + a[i-2]) */
t = (short)(3 - (n % 3));
b.coeffs[0] = (short)(a.coeffs[0] * (2 - t) + a.coeffs[1] * 0 + a.coeffs[2] * t);
b.coeffs[1] = (short)(a.coeffs[1] * (2 - t) + a.coeffs[2] * 0);
b.coeffs[2] = (short)(a.coeffs[2] * (2 - t));
zj = 0; /* z[1] */
for (i = 3; i < n; i++)
{
b.coeffs[0] += a.coeffs[i] * (zj + 2 * t);
b.coeffs[1] += a.coeffs[i] * (zj + t);
b.coeffs[2] += a.coeffs[i] * zj;
zj = (short)((zj + t) % 3);
}
b.coeffs[1] += a.coeffs[0] * (zj + t);
b.coeffs[2] += a.coeffs[0] * zj;
b.coeffs[2] += a.coeffs[1] * (zj + t);
for (i = 3; i < n; i++)
{
b.coeffs[i] = (short)(b.coeffs[i - 3] + 2 * (a.coeffs[i] + a.coeffs[i - 1] + a.coeffs[i - 2]));
}
/* Finish reduction mod Phi by subtracting Phi * b[N-1] */
b.mod3PhiN();
/* Switch from {0,1,2} to {0,1,q-1} coefficient representation */
b.z3ToZq();
/* Multiply by (x-1) */
this.coeffs[0] = (short)-b.coeffs[0];
for (i = 0; i < n - 1; i++)
{
this.coeffs[i + 1] = (short)(b.coeffs[i] - b.coeffs[i + 1]);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy