All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.examples.ECJPAKEExample Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.

The newest version!
package org.bouncycastle.crypto.examples;

import java.math.BigInteger;
import java.security.SecureRandom;

import org.bouncycastle.crypto.CryptoException;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.SavableDigest;
import org.bouncycastle.crypto.agreement.ecjpake.ECJPAKECurve;
import org.bouncycastle.crypto.agreement.ecjpake.ECJPAKECurves;
import org.bouncycastle.crypto.agreement.ecjpake.ECJPAKEParticipant;
import org.bouncycastle.crypto.agreement.ecjpake.ECJPAKERound1Payload;
import org.bouncycastle.crypto.agreement.ecjpake.ECJPAKERound2Payload;
import org.bouncycastle.crypto.agreement.ecjpake.ECJPAKERound3Payload;
import org.bouncycastle.crypto.digests.SHA256Digest;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECPoint;

/**
 * An example of a J-PAKE exchange.
 * 

*

* In this example, both Alice and Bob are on the same computer (in the same JVM, in fact). * In reality, Alice and Bob would be in different locations, * and would be sending their generated payloads to each other. */ public class ECJPAKEExample { public static void main(String args[]) throws CryptoException { // -DM 48 System.out.print /* * Initialization * * Pick an appropriate elliptic curve to use throughout the exchange. * Note that both participants must use the same group. */ ECJPAKECurve curve = ECJPAKECurves.NIST_P256; // ECCurve ecCurve = curve.getCurve(); BigInteger a = curve.getA(); BigInteger b = curve.getB(); ECPoint g = curve.getG(); BigInteger h = curve.getH(); BigInteger n = curve.getN(); BigInteger q = curve.getQ(); String alicePassword = "password"; String bobPassword = "password"; System.out.println("********* Initialization **********"); System.out.println("Public parameters for the elliptic curve over prime field:"); System.out.println("Curve param a (" + a.bitLength() + " bits): " + a.toString(16)); System.out.println("Curve param b (" + b.bitLength() + " bits): " + b.toString(16)); System.out.println("Co-factor h (" + h.bitLength() + " bits): " + h.toString(16)); System.out.println("Base point G (" + g.getEncoded(true).length + " bytes): " + new BigInteger(g.getEncoded(true)).toString(16)); System.out.println("X coord of G (G not normalised) (" + g.getXCoord().toBigInteger().bitLength() + " bits): " + g.getXCoord().toBigInteger().toString(16)); System.out.println("y coord of G (G not normalised) (" + g.getYCoord().toBigInteger().bitLength() + " bits): " + g.getYCoord().toBigInteger().toString(16)); System.out.println("Order of the base point n (" + n.bitLength() + " bits): " + n.toString(16)); System.out.println("Prime field q (" + q.bitLength() + " bits): " + q.toString(16)); System.out.println(""); System.out.println("(Secret passwords used by Alice and Bob: " + "\"" + alicePassword + "\" and \"" + bobPassword + "\")\n"); /* * Both participants must use the same hashing algorithm. */ Digest digest = SHA256Digest.newInstance(); SecureRandom random = new SecureRandom(); ECJPAKEParticipant alice = new ECJPAKEParticipant("alice", alicePassword.toCharArray(), curve, digest, random); ECJPAKEParticipant bob = new ECJPAKEParticipant("bob", bobPassword.toCharArray(), curve, digest, random); /* * Round 1 * * Alice and Bob each generate a round 1 payload, and send it to each other. */ ECJPAKERound1Payload aliceRound1Payload = alice.createRound1PayloadToSend(); ECJPAKERound1Payload bobRound1Payload = bob.createRound1PayloadToSend(); System.out.println("************ Round 1 **************"); System.out.println("Alice sends to Bob: "); System.out.println("g^{x1}=" + new BigInteger(aliceRound1Payload.getGx1().getEncoded(true)).toString(16)); System.out.println("g^{x2}=" + new BigInteger(aliceRound1Payload.getGx2().getEncoded(true)).toString(16)); System.out.println("KP{x1}: {V=" + new BigInteger(aliceRound1Payload.getKnowledgeProofForX1().getV().getEncoded(true)).toString(16) + "; r=" + aliceRound1Payload.getKnowledgeProofForX1().getr().toString(16) + "}"); System.out.println("KP{x2}: {V=" + new BigInteger(aliceRound1Payload.getKnowledgeProofForX2().getV().getEncoded(true)).toString(16) + "; r=" + aliceRound1Payload.getKnowledgeProofForX2().getr().toString(16) + "}"); System.out.println(""); System.out.println("Bob sends to Alice: "); System.out.println("g^{x3}=" + new BigInteger(bobRound1Payload.getGx1().getEncoded(true)).toString(16)); System.out.println("g^{x4}=" + new BigInteger(bobRound1Payload.getGx2().getEncoded(true)).toString(16)); System.out.println("KP{x3}: {V=" + new BigInteger(bobRound1Payload.getKnowledgeProofForX1().getV().getEncoded(true)).toString(16) + "; r=" + bobRound1Payload.getKnowledgeProofForX1().getr().toString(16) + "}"); System.out.println("KP{x4}: {V=" + new BigInteger(bobRound1Payload.getKnowledgeProofForX2().getV().getEncoded(true)).toString(16) + "; r=" + bobRound1Payload.getKnowledgeProofForX2().getr().toString(16) + "}"); System.out.println(""); /* * Each participant must then validate the received payload for round 1 */ alice.validateRound1PayloadReceived(bobRound1Payload); System.out.println("Alice checks g^{x4}!=1: OK"); System.out.println("Alice checks KP{x3}: OK"); System.out.println("Alice checks KP{x4}: OK"); System.out.println(""); bob.validateRound1PayloadReceived(aliceRound1Payload); System.out.println("Bob checks g^{x2}!=1: OK"); System.out.println("Bob checks KP{x1},: OK"); System.out.println("Bob checks KP{x2},: OK"); System.out.println(""); /* * Round 2 * * Alice and Bob each generate a round 2 payload, and send it to each other. */ ECJPAKERound2Payload aliceRound2Payload = alice.createRound2PayloadToSend(); ECJPAKERound2Payload bobRound2Payload = bob.createRound2PayloadToSend(); System.out.println("************ Round 2 **************"); System.out.println("Alice sends to Bob: "); System.out.println("A=" + new BigInteger(aliceRound2Payload.getA().getEncoded(true)).toString(16)); System.out.println("KP{x2*s}: {V=" + new BigInteger(aliceRound2Payload.getKnowledgeProofForX2s().getV().getEncoded(true)).toString(16) + ", r=" + aliceRound2Payload.getKnowledgeProofForX2s().getr().toString(16) + "}"); System.out.println(""); System.out.println("Bob sends to Alice"); System.out.println("B=" + new BigInteger(bobRound2Payload.getA().getEncoded(true)).toString(16)); System.out.println("KP{x4*s}: {V=" + new BigInteger(bobRound2Payload.getKnowledgeProofForX2s().getV().getEncoded(true)).toString(16) + ", r=" + bobRound2Payload.getKnowledgeProofForX2s().getr().toString(16) + "}"); System.out.println(""); /* * Each participant must then validate the received payload for round 2 */ alice.validateRound2PayloadReceived(bobRound2Payload); System.out.println("Alice checks KP{x4*s}: OK\n"); bob.validateRound2PayloadReceived(aliceRound2Payload); System.out.println("Bob checks KP{x2*s}: OK\n"); /* * After round 2, each participant computes the keying material. */ BigInteger aliceKeyingMaterial = alice.calculateKeyingMaterial(); BigInteger bobKeyingMaterial = bob.calculateKeyingMaterial(); System.out.println("********* After round 2 ***********"); System.out.println("Alice computes key material \t K=" + aliceKeyingMaterial.toString(16)); System.out.println("Bob computes key material \t K=" + bobKeyingMaterial.toString(16)); System.out.println(); /* * You must derive a session key from the keying material applicable * to whatever encryption algorithm you want to use. */ BigInteger aliceKey = deriveSessionKey(aliceKeyingMaterial); BigInteger bobKey = deriveSessionKey(bobKeyingMaterial); /* * At this point, you can stop and use the session keys if you want. * This is implicit key confirmation. * * If you want to explicitly confirm that the key material matches, * you can continue on and perform round 3. */ /* * Round 3 * * Alice and Bob each generate a round 3 payload, and send it to each other. */ ECJPAKERound3Payload aliceRound3Payload = alice.createRound3PayloadToSend(aliceKeyingMaterial); ECJPAKERound3Payload bobRound3Payload = bob.createRound3PayloadToSend(bobKeyingMaterial); // -DM 11grad System.out.println System.out.println("************ Round 3 **************"); System.out.println("Alice sends to Bob: "); System.out.println("MacTag=" + aliceRound3Payload.getMacTag().toString(16)); System.out.println(""); System.out.println("Bob sends to Alice: "); System.out.println("MacTag=" + bobRound3Payload.getMacTag().toString(16)); System.out.println(""); /* * Each participant must then validate the received payload for round 3 */ alice.validateRound3PayloadReceived(bobRound3Payload, aliceKeyingMaterial); System.out.println("Alice checks MacTag: OK\n"); bob.validateRound3PayloadReceived(aliceRound3Payload, bobKeyingMaterial); System.out.println("Bob checks MacTag: OK\n"); System.out.println(); System.out.println("MacTags validated, therefore the keying material matches."); } private static BigInteger deriveSessionKey(BigInteger keyingMaterial) { /* * You should use a secure key derivation function (KDF) to derive the session key. * * For the purposes of this example, I'm just going to use a hash of the keying material. */ SavableDigest digest = SHA256Digest.newInstance(); byte[] keyByteArray = keyingMaterial.toByteArray(); byte[] output = new byte[digest.getDigestSize()]; digest.update(keyByteArray, 0, keyByteArray.length); digest.doFinal(output, 0); return new BigInteger(output); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy