org.bouncycastle.pqc.crypto.rainbow.RainbowKeyPairGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk15on Show documentation
Show all versions of bcprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 and up.
package org.bouncycastle.pqc.crypto.rainbow;
import java.security.SecureRandom;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
import org.bouncycastle.crypto.KeyGenerationParameters;
import org.bouncycastle.pqc.crypto.rainbow.util.ComputeInField;
import org.bouncycastle.pqc.crypto.rainbow.util.GF2Field;
/**
* This class implements AsymmetricCipherKeyPairGenerator. It is used
* as a generator for the private and public key of the Rainbow Signature
* Scheme.
*
* Detailed information about the key generation is to be found in the paper of
* Jintai Ding, Dieter Schmidt: Rainbow, a New Multivariable Polynomial
* Signature Scheme. ACNS 2005: 164-175 (http://dx.doi.org/10.1007/11496137_12)
*/
public class RainbowKeyPairGenerator
implements AsymmetricCipherKeyPairGenerator
{
private boolean initialized = false;
private SecureRandom sr;
private RainbowKeyGenerationParameters rainbowParams;
/* linear affine map L1: */
private short[][] A1; // matrix of the lin. affine map L1(n-v1 x n-v1 matrix)
private short[][] A1inv; // inverted A1
private short[] b1; // translation element of the lin.affine map L1
/* linear affine map L2: */
private short[][] A2; // matrix of the lin. affine map (n x n matrix)
private short[][] A2inv; // inverted A2
private short[] b2; // translation elemt of the lin.affine map L2
/* components of F: */
private int numOfLayers; // u (number of sets S)
private Layer layers[]; // layers of polynomials of F
private int[] vi; // set of vinegar vars per layer.
/* components of Public Key */
private short[][] pub_quadratic; // quadratic(mixed) coefficients
private short[][] pub_singular; // singular coefficients
private short[] pub_scalar; // scalars
// TODO
/**
* The standard constructor tries to generate the Rainbow algorithm identifier
* with the corresponding OID.
*
*/
public RainbowKeyPairGenerator()
{
}
/**
* This function generates a Rainbow key pair.
*
* @return the generated key pair
*/
public AsymmetricCipherKeyPair genKeyPair()
{
RainbowPrivateKeyParameters privKey;
RainbowPublicKeyParameters pubKey;
if (!initialized)
{
initializeDefault();
}
/* choose all coefficients at random */
keygen();
/* now marshall them to PrivateKey */
privKey = new RainbowPrivateKeyParameters(A1inv, b1, A2inv, b2, vi, layers);
/* marshall to PublicKey */
pubKey = new RainbowPublicKeyParameters(vi[vi.length - 1] - vi[0], pub_quadratic, pub_singular, pub_scalar);
return new AsymmetricCipherKeyPair(pubKey, privKey);
}
// TODO
public void initialize(
KeyGenerationParameters param)
{
this.rainbowParams = (RainbowKeyGenerationParameters)param;
// set source of randomness
this.sr = new SecureRandom();
// unmarshalling:
this.vi = this.rainbowParams.getParameters().getVi();
this.numOfLayers = this.rainbowParams.getParameters().getNumOfLayers();
this.initialized = true;
}
private void initializeDefault()
{
RainbowKeyGenerationParameters rbKGParams = new RainbowKeyGenerationParameters(new SecureRandom(), new RainbowParameters());
initialize(rbKGParams);
}
/**
* This function calls the functions for the random generation of the coefficients
* and the matrices needed for the private key and the method for computing the public key.
*/
private void keygen()
{
generateL1();
generateL2();
generateF();
computePublicKey();
}
/**
* This function generates the invertible affine linear map L1 = A1*x + b1
*
* The translation part b1, is stored in a separate array. The inverse of
* the matrix-part of L1 A1inv is also computed here.
*
* This linear map hides the output of the map F. It is on k^(n-v1).
*/
private void generateL1()
{
// dimension = n-v1 = vi[last] - vi[first]
int dim = vi[vi.length - 1] - vi[0];
this.A1 = new short[dim][dim];
this.A1inv = null;
ComputeInField c = new ComputeInField();
/* generation of A1 at random */
while (A1inv == null)
{
for (int i = 0; i < dim; i++)
{
for (int j = 0; j < dim; j++)
{
A1[i][j] = (short)(sr.nextInt() & GF2Field.MASK);
}
}
A1inv = c.inverse(A1);
}
/* generation of the translation vector at random */
b1 = new short[dim];
for (int i = 0; i < dim; i++)
{
b1[i] = (short)(sr.nextInt() & GF2Field.MASK);
}
}
/**
* This function generates the invertible affine linear map L2 = A2*x + b2
*
* The translation part b2, is stored in a separate array. The inverse of
* the matrix-part of L2 A2inv is also computed here.
*
* This linear map hides the output of the map F. It is on k^(n).
*/
private void generateL2()
{
// dimension = n = vi[last]
int dim = vi[vi.length - 1];
this.A2 = new short[dim][dim];
this.A2inv = null;
ComputeInField c = new ComputeInField();
/* generation of A2 at random */
while (this.A2inv == null)
{
for (int i = 0; i < dim; i++)
{
for (int j = 0; j < dim; j++)
{ // one col extra for b
A2[i][j] = (short)(sr.nextInt() & GF2Field.MASK);
}
}
this.A2inv = c.inverse(A2);
}
/* generation of the translation vector at random */
b2 = new short[dim];
for (int i = 0; i < dim; i++)
{
b2[i] = (short)(sr.nextInt() & GF2Field.MASK);
}
}
/**
* This function generates the private map F, which consists of u-1 layers.
* Each layer consists of oi polynomials where oi = vi[i+1]-vi[i].
*
* The methods for the generation of the coefficients of these polynomials
* are called here.
*/
private void generateF()
{
this.layers = new Layer[this.numOfLayers];
for (int i = 0; i < this.numOfLayers; i++)
{
layers[i] = new Layer(this.vi[i], this.vi[i + 1], sr);
}
}
/**
* This function computes the public key from the private key.
*
* The composition of F with L2 is computed, followed by applying L1 to the
* composition's result. The singular and scalar values constitute to the
* public key as is, the quadratic terms are compacted in
* compactPublicKey()
*/
private void computePublicKey()
{
ComputeInField c = new ComputeInField();
int rows = this.vi[this.vi.length - 1] - this.vi[0];
int vars = this.vi[this.vi.length - 1];
// Fpub
short[][][] coeff_quadratic_3dim = new short[rows][vars][vars];
this.pub_singular = new short[rows][vars];
this.pub_scalar = new short[rows];
// Coefficients of layers of Private Key F
short[][][] coeff_alpha;
short[][][] coeff_beta;
short[][] coeff_gamma;
short[] coeff_eta;
// Needed for counters;
int oils = 0;
int vins = 0;
int crnt_row = 0; // current row (polynomial)
short vect_tmp[] = new short[vars]; // vector tmp;
short sclr_tmp = 0;
// Composition of F and L2: Insert L2 = A2*x+b2 in F
for (int l = 0; l < this.layers.length; l++)
{
// get coefficients of current layer
coeff_alpha = this.layers[l].getCoeffAlpha();
coeff_beta = this.layers[l].getCoeffBeta();
coeff_gamma = this.layers[l].getCoeffGamma();
coeff_eta = this.layers[l].getCoeffEta();
oils = coeff_alpha[0].length;// this.layers[l].getOi();
vins = coeff_beta[0].length;// this.layers[l].getVi();
// compute polynomials of layer
for (int p = 0; p < oils; p++)
{
// multiply alphas
for (int x1 = 0; x1 < oils; x1++)
{
for (int x2 = 0; x2 < vins; x2++)
{
// multiply polynomial1 with polynomial2
vect_tmp = c.multVect(coeff_alpha[p][x1][x2],
this.A2[x1 + vins]);
coeff_quadratic_3dim[crnt_row + p] = c.addSquareMatrix(
coeff_quadratic_3dim[crnt_row + p], c
.multVects(vect_tmp, this.A2[x2]));
// mul poly1 with scalar2
vect_tmp = c.multVect(this.b2[x2], vect_tmp);
this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
this.pub_singular[crnt_row + p]);
// mul scalar1 with poly2
vect_tmp = c.multVect(coeff_alpha[p][x1][x2],
this.A2[x2]);
vect_tmp = c.multVect(b2[x1 + vins], vect_tmp);
this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
this.pub_singular[crnt_row + p]);
// mul scalar1 with scalar2
sclr_tmp = GF2Field.multElem(coeff_alpha[p][x1][x2],
this.b2[x1 + vins]);
this.pub_scalar[crnt_row + p] = GF2Field.addElem(
this.pub_scalar[crnt_row + p], GF2Field
.multElem(sclr_tmp, this.b2[x2]));
}
}
// multiply betas
for (int x1 = 0; x1 < vins; x1++)
{
for (int x2 = 0; x2 < vins; x2++)
{
// multiply polynomial1 with polynomial2
vect_tmp = c.multVect(coeff_beta[p][x1][x2],
this.A2[x1]);
coeff_quadratic_3dim[crnt_row + p] = c.addSquareMatrix(
coeff_quadratic_3dim[crnt_row + p], c
.multVects(vect_tmp, this.A2[x2]));
// mul poly1 with scalar2
vect_tmp = c.multVect(this.b2[x2], vect_tmp);
this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
this.pub_singular[crnt_row + p]);
// mul scalar1 with poly2
vect_tmp = c.multVect(coeff_beta[p][x1][x2],
this.A2[x2]);
vect_tmp = c.multVect(this.b2[x1], vect_tmp);
this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
this.pub_singular[crnt_row + p]);
// mul scalar1 with scalar2
sclr_tmp = GF2Field.multElem(coeff_beta[p][x1][x2],
this.b2[x1]);
this.pub_scalar[crnt_row + p] = GF2Field.addElem(
this.pub_scalar[crnt_row + p], GF2Field
.multElem(sclr_tmp, this.b2[x2]));
}
}
// multiply gammas
for (int n = 0; n < vins + oils; n++)
{
// mul poly with scalar
vect_tmp = c.multVect(coeff_gamma[p][n], this.A2[n]);
this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
this.pub_singular[crnt_row + p]);
// mul scalar with scalar
this.pub_scalar[crnt_row + p] = GF2Field.addElem(
this.pub_scalar[crnt_row + p], GF2Field.multElem(
coeff_gamma[p][n], this.b2[n]));
}
// add eta
this.pub_scalar[crnt_row + p] = GF2Field.addElem(
this.pub_scalar[crnt_row + p], coeff_eta[p]);
}
crnt_row = crnt_row + oils;
}
// Apply L1 = A1*x+b1 to composition of F and L2
{
// temporary coefficient arrays
short[][][] tmp_c_quad = new short[rows][vars][vars];
short[][] tmp_c_sing = new short[rows][vars];
short[] tmp_c_scal = new short[rows];
for (int r = 0; r < rows; r++)
{
for (int q = 0; q < A1.length; q++)
{
tmp_c_quad[r] = c.addSquareMatrix(tmp_c_quad[r], c
.multMatrix(A1[r][q], coeff_quadratic_3dim[q]));
tmp_c_sing[r] = c.addVect(tmp_c_sing[r], c.multVect(
A1[r][q], this.pub_singular[q]));
tmp_c_scal[r] = GF2Field.addElem(tmp_c_scal[r], GF2Field
.multElem(A1[r][q], this.pub_scalar[q]));
}
tmp_c_scal[r] = GF2Field.addElem(tmp_c_scal[r], b1[r]);
}
// set public key
coeff_quadratic_3dim = tmp_c_quad;
this.pub_singular = tmp_c_sing;
this.pub_scalar = tmp_c_scal;
}
compactPublicKey(coeff_quadratic_3dim);
}
/**
* The quadratic (or mixed) terms of the public key are compacted from a n x
* n matrix per polynomial to an upper diagonal matrix stored in one integer
* array of n (n + 1) / 2 elements per polynomial. The ordering of elements
* is lexicographic and the result is updating this.pub_quadratic,
* which stores the quadratic elements of the public key.
*
* @param coeff_quadratic_to_compact 3-dimensional array containing a n x n Matrix for each of the
* n - v1 polynomials
*/
private void compactPublicKey(short[][][] coeff_quadratic_to_compact)
{
int polynomials = coeff_quadratic_to_compact.length;
int n = coeff_quadratic_to_compact[0].length;
int entries = n * (n + 1) / 2;// the small gauss
this.pub_quadratic = new short[polynomials][entries];
int offset = 0;
for (int p = 0; p < polynomials; p++)
{
offset = 0;
for (int x = 0; x < n; x++)
{
for (int y = x; y < n; y++)
{
if (y == x)
{
this.pub_quadratic[p][offset] = coeff_quadratic_to_compact[p][x][y];
}
else
{
this.pub_quadratic[p][offset] = GF2Field.addElem(
coeff_quadratic_to_compact[p][x][y],
coeff_quadratic_to_compact[p][y][x]);
}
offset++;
}
}
}
}
public void init(KeyGenerationParameters param)
{
this.initialize(param);
}
public AsymmetricCipherKeyPair generateKeyPair()
{
return genKeyPair();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy