All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 and up.

There is a newer version: 1.70
Show newest version
package org.bouncycastle.pqc.math.linearalgebra;

import java.security.SecureRandom;

/**
 * This class describes operations with polynomials from the ring R =
 * GF(2^m)[X], where 2 <= m <=31.
 *
 * @see GF2mField
 * @see PolynomialRingGF2m
 */
public class PolynomialGF2mSmallM
{

    /**
     * the finite field GF(2^m)
     */
    private GF2mField field;

    /**
     * the degree of this polynomial
     */
    private int degree;

    /**
     * For the polynomial representation the map f: R->Z*,
     * poly(X) -> [coef_0, coef_1, ...] is used, where
     * coef_i is the ith coefficient of the polynomial
     * represented as int (see {@link GF2mField}). The polynomials are stored
     * as int arrays.
     */
    private int[] coefficients;

    /*
      * some types of polynomials
      */

    /**
     * Constant used for polynomial construction (see constructor
     * {@link #PolynomialGF2mSmallM(GF2mField, int, char, SecureRandom)}).
     */
    public static final char RANDOM_IRREDUCIBLE_POLYNOMIAL = 'I';

    /**
     * Construct the zero polynomial over the finite field GF(2^m).
     *
     * @param field the finite field GF(2^m)
     */
    public PolynomialGF2mSmallM(GF2mField field)
    {
        this.field = field;
        degree = -1;
        coefficients = new int[1];
    }

    /**
     * Construct a polynomial over the finite field GF(2^m).
     *
     * @param field            the finite field GF(2^m)
     * @param deg              degree of polynomial
     * @param typeOfPolynomial type of polynomial
     * @param sr               PRNG
     */
    public PolynomialGF2mSmallM(GF2mField field, int deg,
                                char typeOfPolynomial, SecureRandom sr)
    {
        this.field = field;

        switch (typeOfPolynomial)
        {
        case PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL:
            coefficients = createRandomIrreduciblePolynomial(deg, sr);
            break;
        default:
            throw new IllegalArgumentException(" Error: type "
                + typeOfPolynomial
                + " is not defined for GF2smallmPolynomial");
        }
        computeDegree();
    }

    /**
     * Create an irreducible polynomial with the given degree over the field
     * GF(2^m).
     *
     * @param deg polynomial degree
     * @param sr  source of randomness
     * @return the generated irreducible polynomial
     */
    private int[] createRandomIrreduciblePolynomial(int deg, SecureRandom sr)
    {
        int[] resCoeff = new int[deg + 1];
        resCoeff[deg] = 1;
        resCoeff[0] = field.getRandomNonZeroElement(sr);
        for (int i = 1; i < deg; i++)
        {
            resCoeff[i] = field.getRandomElement(sr);
        }
        while (!isIrreducible(resCoeff))
        {
            int n = RandUtils.nextInt(sr, deg);
            if (n == 0)
            {
                resCoeff[0] = field.getRandomNonZeroElement(sr);
            }
            else
            {
                resCoeff[n] = field.getRandomElement(sr);
            }
        }
        return resCoeff;
    }

    /**
     * Construct a monomial of the given degree over the finite field GF(2^m).
     *
     * @param field  the finite field GF(2^m)
     * @param degree the degree of the monomial
     */
    public PolynomialGF2mSmallM(GF2mField field, int degree)
    {
        this.field = field;
        this.degree = degree;
        coefficients = new int[degree + 1];
        coefficients[degree] = 1;
    }

    /**
     * Construct the polynomial over the given finite field GF(2^m) from the
     * given coefficient vector.
     *
     * @param field  finite field GF2m
     * @param coeffs the coefficient vector
     */
    public PolynomialGF2mSmallM(GF2mField field, int[] coeffs)
    {
        this.field = field;
        coefficients = normalForm(coeffs);
        computeDegree();
    }

    /**
     * Create a polynomial over the finite field GF(2^m).
     *
     * @param field the finite field GF(2^m)
     * @param enc   byte[] polynomial in byte array form
     */
    public PolynomialGF2mSmallM(GF2mField field, byte[] enc)
    {
        this.field = field;

        // decodes polynomial
        int d = 8;
        int count = 1;
        while (field.getDegree() > d)
        {
            count++;
            d += 8;
        }

        if ((enc.length % count) != 0)
        {
            throw new IllegalArgumentException(
                " Error: byte array is not encoded polynomial over given finite field GF2m");
        }

        coefficients = new int[enc.length / count];
        count = 0;
        for (int i = 0; i < coefficients.length; i++)
        {
            for (int j = 0; j < d; j += 8)
            {
                coefficients[i] ^= (enc[count++] & 0x000000ff) << j;
            }
            if (!this.field.isElementOfThisField(coefficients[i]))
            {
                throw new IllegalArgumentException(
                    " Error: byte array is not encoded polynomial over given finite field GF2m");
            }
        }
        // if HC = 0 for non-zero polynomial, returns error
        if ((coefficients.length != 1)
            && (coefficients[coefficients.length - 1] == 0))
        {
            throw new IllegalArgumentException(
                " Error: byte array is not encoded polynomial over given finite field GF2m");
        }
        computeDegree();
    }

    /**
     * Copy constructor.
     *
     * @param other another {@link PolynomialGF2mSmallM}
     */
    public PolynomialGF2mSmallM(PolynomialGF2mSmallM other)
    {
        // field needs not to be cloned since it is immutable
        field = other.field;
        degree = other.degree;
        coefficients = IntUtils.clone(other.coefficients);
    }

    /**
     * Create a polynomial over the finite field GF(2^m) out of the given
     * coefficient vector. The finite field is also obtained from the
     * {@link GF2mVector}.
     *
     * @param vect the coefficient vector
     */
    public PolynomialGF2mSmallM(GF2mVector vect)
    {
        this(vect.getField(), vect.getIntArrayForm());
    }

    /*
      * ------------------------
      */

    /**
     * Return the degree of this polynomial
     *
     * @return int degree of this polynomial if this is zero polynomial return
     *         -1
     */
    public int getDegree()
    {
        int d = coefficients.length - 1;
        if (coefficients[d] == 0)
        {
            return -1;
        }
        return d;
    }

    /**
     * @return the head coefficient of this polynomial
     */
    public int getHeadCoefficient()
    {
        if (degree == -1)
        {
            return 0;
        }
        return coefficients[degree];
    }

    /**
     * Return the head coefficient of a polynomial.
     *
     * @param a the polynomial
     * @return the head coefficient of a
     */
    private static int headCoefficient(int[] a)
    {
        int degree = computeDegree(a);
        if (degree == -1)
        {
            return 0;
        }
        return a[degree];
    }

    /**
     * Return the coefficient with the given index.
     *
     * @param index the index
     * @return the coefficient with the given index
     */
    public int getCoefficient(int index)
    {
        if ((index < 0) || (index > degree))
        {
            return 0;
        }
        return coefficients[index];
    }

    /**
     * Returns encoded polynomial, i.e., this polynomial in byte array form
     *
     * @return the encoded polynomial
     */
    public byte[] getEncoded()
    {
        int d = 8;
        int count = 1;
        while (field.getDegree() > d)
        {
            count++;
            d += 8;
        }

        byte[] res = new byte[coefficients.length * count];
        count = 0;
        for (int i = 0; i < coefficients.length; i++)
        {
            for (int j = 0; j < d; j += 8)
            {
                res[count++] = (byte)(coefficients[i] >>> j);
            }
        }

        return res;
    }

    /**
     * Evaluate this polynomial p at a value e (in
     * GF(2^m)) with the Horner scheme.
     *
     * @param e the element of the finite field GF(2^m)
     * @return this(e)
     */
    public int evaluateAt(int e)
    {
        int result = coefficients[degree];
        for (int i = degree - 1; i >= 0; i--)
        {
            result = field.mult(result, e) ^ coefficients[i];
        }
        return result;
    }

    /**
     * Compute the sum of this polynomial and the given polynomial.
     *
     * @param addend the addend
     * @return this + a (newly created)
     */
    public PolynomialGF2mSmallM add(PolynomialGF2mSmallM addend)
    {
        int[] resultCoeff = add(coefficients, addend.coefficients);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Add the given polynomial to this polynomial (overwrite this).
     *
     * @param addend the addend
     */
    public void addToThis(PolynomialGF2mSmallM addend)
    {
        coefficients = add(coefficients, addend.coefficients);
        computeDegree();
    }

    /**
     * Compute the sum of two polynomials a and b over the finite field
     * GF(2^m).
     *
     * @param a the first polynomial
     * @param b the second polynomial
     * @return a + b
     */
    private int[] add(int[] a, int[] b)
    {
        int[] result, addend;
        if (a.length < b.length)
        {
            result = new int[b.length];
            System.arraycopy(b, 0, result, 0, b.length);
            addend = a;
        }
        else
        {
            result = new int[a.length];
            System.arraycopy(a, 0, result, 0, a.length);
            addend = b;
        }

        for (int i = addend.length - 1; i >= 0; i--)
        {
            result[i] = field.add(result[i], addend[i]);
        }

        return result;
    }

    /**
     * Compute the sum of this polynomial and the monomial of the given degree.
     *
     * @param degree the degree of the monomial
     * @return this + X^k
     */
    public PolynomialGF2mSmallM addMonomial(int degree)
    {
        int[] monomial = new int[degree + 1];
        monomial[degree] = 1;
        int[] resultCoeff = add(coefficients, monomial);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Compute the product of this polynomial with an element from GF(2^m).
     *
     * @param element an element of the finite field GF(2^m)
     * @return this * element (newly created)
     * @throws ArithmeticException if element is not an element of the finite
     * field this polynomial is defined over.
     */
    public PolynomialGF2mSmallM multWithElement(int element)
    {
        if (!field.isElementOfThisField(element))
        {
            throw new ArithmeticException(
                "Not an element of the finite field this polynomial is defined over.");
        }
        int[] resultCoeff = multWithElement(coefficients, element);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Multiply this polynomial with an element from GF(2^m).
     *
     * @param element an element of the finite field GF(2^m)
     * @throws ArithmeticException if element is not an element of the finite
     * field this polynomial is defined over.
     */
    public void multThisWithElement(int element)
    {
        if (!field.isElementOfThisField(element))
        {
            throw new ArithmeticException(
                "Not an element of the finite field this polynomial is defined over.");
        }
        coefficients = multWithElement(coefficients, element);
        computeDegree();
    }

    /**
     * Compute the product of a polynomial a with an element from the finite
     * field GF(2^m).
     *
     * @param a       the polynomial
     * @param element an element of the finite field GF(2^m)
     * @return a * element
     */
    private int[] multWithElement(int[] a, int element)
    {
        int degree = computeDegree(a);
        if (degree == -1 || element == 0)
        {
            return new int[1];
        }

        if (element == 1)
        {
            return IntUtils.clone(a);
        }

        int[] result = new int[degree + 1];
        for (int i = degree; i >= 0; i--)
        {
            result[i] = field.mult(a[i], element);
        }

        return result;
    }

    /**
     * Compute the product of this polynomial with a monomial X^k.
     *
     * @param k the degree of the monomial
     * @return this * X^k
     */
    public PolynomialGF2mSmallM multWithMonomial(int k)
    {
        int[] resultCoeff = multWithMonomial(coefficients, k);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Compute the product of a polynomial with a monomial X^k.
     *
     * @param a the polynomial
     * @param k the degree of the monomial
     * @return a * X^k
     */
    private static int[] multWithMonomial(int[] a, int k)
    {
        int d = computeDegree(a);
        if (d == -1)
        {
            return new int[1];
        }
        int[] result = new int[d + k + 1];
        System.arraycopy(a, 0, result, k, d + 1);
        return result;
    }

    /**
     * Divide this polynomial by the given polynomial.
     *
     * @param f a polynomial
     * @return polynomial pair = {q,r} where this = q*f+r and deg(r) <
     *         deg(f);
     */
    public PolynomialGF2mSmallM[] div(PolynomialGF2mSmallM f)
    {
        int[][] resultCoeffs = div(coefficients, f.coefficients);
        return new PolynomialGF2mSmallM[]{
            new PolynomialGF2mSmallM(field, resultCoeffs[0]),
            new PolynomialGF2mSmallM(field, resultCoeffs[1])};
    }

    /**
     * Compute the result of the division of two polynomials over the field
     * GF(2^m).
     *
     * @param a the first polynomial
     * @param f the second polynomial
     * @return int[][] {q,r}, where a = q*f+r and deg(r) < deg(f);
     */
    private int[][] div(int[] a, int[] f)
    {
        int df = computeDegree(f);
        int da = computeDegree(a) + 1;
        if (df == -1)
        {
            throw new ArithmeticException("Division by zero.");
        }
        int[][] result = new int[2][];
        result[0] = new int[1];
        result[1] = new int[da];
        int hc = headCoefficient(f);
        hc = field.inverse(hc);
        result[0][0] = 0;
        System.arraycopy(a, 0, result[1], 0, result[1].length);
        while (df <= computeDegree(result[1]))
        {
            int[] q;
            int[] coeff = new int[1];
            coeff[0] = field.mult(headCoefficient(result[1]), hc);
            q = multWithElement(f, coeff[0]);
            int n = computeDegree(result[1]) - df;
            q = multWithMonomial(q, n);
            coeff = multWithMonomial(coeff, n);
            result[0] = add(coeff, result[0]);
            result[1] = add(q, result[1]);
        }
        return result;
    }

    /**
     * Return the greatest common divisor of this and a polynomial f
     *
     * @param f polynomial
     * @return GCD(this, f)
     */
    public PolynomialGF2mSmallM gcd(PolynomialGF2mSmallM f)
    {
        int[] resultCoeff = gcd(coefficients, f.coefficients);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Return the greatest common divisor of two polynomials over the field
     * GF(2^m).
     *
     * @param f the first polynomial
     * @param g the second polynomial
     * @return gcd(f, g)
     */
    private int[] gcd(int[] f, int[] g)
    {
        int[] a = f;
        int[] b = g;
        if (computeDegree(a) == -1)
        {
            return b;
        }
        while (computeDegree(b) != -1)
        {
            int[] c = mod(a, b);
            a = new int[b.length];
            System.arraycopy(b, 0, a, 0, a.length);
            b = new int[c.length];
            System.arraycopy(c, 0, b, 0, b.length);
        }
        int coeff = field.inverse(headCoefficient(a));
        return multWithElement(a, coeff);
    }

    /**
     * Compute the product of this polynomial and the given factor using a
     * Karatzuba like scheme.
     *
     * @param factor the polynomial
     * @return this * factor
     */
    public PolynomialGF2mSmallM multiply(PolynomialGF2mSmallM factor)
    {
        int[] resultCoeff = multiply(coefficients, factor.coefficients);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Compute the product of two polynomials over the field GF(2^m)
     * using a Karatzuba like multiplication.
     *
     * @param a the first polynomial
     * @param b the second polynomial
     * @return a * b
     */
    private int[] multiply(int[] a, int[] b)
    {
        int[] mult1, mult2;
        if (computeDegree(a) < computeDegree(b))
        {
            mult1 = b;
            mult2 = a;
        }
        else
        {
            mult1 = a;
            mult2 = b;
        }

        mult1 = normalForm(mult1);
        mult2 = normalForm(mult2);

        if (mult2.length == 1)
        {
            return multWithElement(mult1, mult2[0]);
        }

        int d1 = mult1.length;
        int d2 = mult2.length;
        int[] result = new int[d1 + d2 - 1];

        if (d2 != d1)
        {
            int[] res1 = new int[d2];
            int[] res2 = new int[d1 - d2];
            System.arraycopy(mult1, 0, res1, 0, res1.length);
            System.arraycopy(mult1, d2, res2, 0, res2.length);
            res1 = multiply(res1, mult2);
            res2 = multiply(res2, mult2);
            res2 = multWithMonomial(res2, d2);
            result = add(res1, res2);
        }
        else
        {
            d2 = (d1 + 1) >>> 1;
            int d = d1 - d2;
            int[] firstPartMult1 = new int[d2];
            int[] firstPartMult2 = new int[d2];
            int[] secondPartMult1 = new int[d];
            int[] secondPartMult2 = new int[d];
            System
                .arraycopy(mult1, 0, firstPartMult1, 0,
                    firstPartMult1.length);
            System.arraycopy(mult1, d2, secondPartMult1, 0,
                secondPartMult1.length);
            System
                .arraycopy(mult2, 0, firstPartMult2, 0,
                    firstPartMult2.length);
            System.arraycopy(mult2, d2, secondPartMult2, 0,
                secondPartMult2.length);
            int[] helpPoly1 = add(firstPartMult1, secondPartMult1);
            int[] helpPoly2 = add(firstPartMult2, secondPartMult2);
            int[] res1 = multiply(firstPartMult1, firstPartMult2);
            int[] res2 = multiply(helpPoly1, helpPoly2);
            int[] res3 = multiply(secondPartMult1, secondPartMult2);
            res2 = add(res2, res1);
            res2 = add(res2, res3);
            res3 = multWithMonomial(res3, d2);
            result = add(res2, res3);
            result = multWithMonomial(result, d2);
            result = add(result, res1);
        }

        return result;
    }

    /*
      * ---------------- PART II ----------------
      *
      */

    /**
     * Check a polynomial for irreducibility over the field GF(2^m).
     *
     * @param a the polynomial to check
     * @return true if a is irreducible, false otherwise
     */
    private boolean isIrreducible(int[] a)
    {
        if (a[0] == 0)
        {
            return false;
        }
        int d = computeDegree(a) >> 1;
        int[] u = {0, 1};
        final int[] Y = {0, 1};
        int fieldDegree = field.getDegree();
        for (int i = 0; i < d; i++)
        {
            for (int j = fieldDegree - 1; j >= 0; j--)
            {
                u = modMultiply(u, u, a);
            }
            u = normalForm(u);
            int[] g = gcd(add(u, Y), a);
            if (computeDegree(g) != 0)
            {
                return false;
            }
        }
        return true;
    }

    /**
     * Reduce this polynomial modulo another polynomial.
     *
     * @param f the reduction polynomial
     * @return this mod f
     */
    public PolynomialGF2mSmallM mod(PolynomialGF2mSmallM f)
    {
        int[] resultCoeff = mod(coefficients, f.coefficients);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Reduce a polynomial modulo another polynomial.
     *
     * @param a the polynomial
     * @param f the reduction polynomial
     * @return a mod f
     */
    private int[] mod(int[] a, int[] f)
    {
        int df = computeDegree(f);
        if (df == -1)
        {
            throw new ArithmeticException("Division by zero");
        }
        int[] result = new int[a.length];
        int hc = headCoefficient(f);
        hc = field.inverse(hc);
        System.arraycopy(a, 0, result, 0, result.length);
        while (df <= computeDegree(result))
        {
            int[] q;
            int coeff = field.mult(headCoefficient(result), hc);
            q = multWithMonomial(f, computeDegree(result) - df);
            q = multWithElement(q, coeff);
            result = add(q, result);
        }
        return result;
    }

    /**
     * Compute the product of this polynomial and another polynomial modulo a
     * third polynomial.
     *
     * @param a another polynomial
     * @param b the reduction polynomial
     * @return this * a mod b
     */
    public PolynomialGF2mSmallM modMultiply(PolynomialGF2mSmallM a,
                                            PolynomialGF2mSmallM b)
    {
        int[] resultCoeff = modMultiply(coefficients, a.coefficients,
            b.coefficients);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Square this polynomial using a squaring matrix.
     *
     * @param matrix the squaring matrix
     * @return this^2 modulo the reduction polynomial implicitly
     *         given via the squaring matrix
     */
    public PolynomialGF2mSmallM modSquareMatrix(PolynomialGF2mSmallM[] matrix)
    {

        int length = matrix.length;

        int[] resultCoeff = new int[length];
        int[] thisSquare = new int[length];

        // square each entry of this polynomial
        for (int i = 0; i < coefficients.length; i++)
        {
            thisSquare[i] = field.mult(coefficients[i], coefficients[i]);
        }

        // do matrix-vector multiplication
        for (int i = 0; i < length; i++)
        {
            // compute scalar product of i-th row and coefficient vector
            for (int j = 0; j < length; j++)
            {
                if (i >= matrix[j].coefficients.length)
                {
                    continue;
                }
                int scalarTerm = field.mult(matrix[j].coefficients[i],
                    thisSquare[j]);
                resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
            }
        }

        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Compute the product of two polynomials modulo a third polynomial over the
     * finite field GF(2^m).
     *
     * @param a the first polynomial
     * @param b the second polynomial
     * @param g the reduction polynomial
     * @return a * b mod g
     */
    private int[] modMultiply(int[] a, int[] b, int[] g)
    {
        return mod(multiply(a, b), g);
    }

    /**
     * Compute the square root of this polynomial modulo the given polynomial.
     *
     * @param a the reduction polynomial
     * @return this^(1/2) mod a
     */
    public PolynomialGF2mSmallM modSquareRoot(PolynomialGF2mSmallM a)
    {
        int[] resultCoeff = IntUtils.clone(coefficients);
        int[] help = modMultiply(resultCoeff, resultCoeff, a.coefficients);
        while (!isEqual(help, coefficients))
        {
            resultCoeff = normalForm(help);
            help = modMultiply(resultCoeff, resultCoeff, a.coefficients);
        }

        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Compute the square root of this polynomial using a square root matrix.
     *
     * @param matrix the matrix for computing square roots in
     *               (GF(2^m))^t the polynomial ring defining the
     *               square root matrix
     * @return this^(1/2) modulo the reduction polynomial implicitly
     *         given via the square root matrix
     */
    public PolynomialGF2mSmallM modSquareRootMatrix(
        PolynomialGF2mSmallM[] matrix)
    {

        int length = matrix.length;

        int[] resultCoeff = new int[length];

        // do matrix multiplication
        for (int i = 0; i < length; i++)
        {
            // compute scalar product of i-th row and j-th column
            for (int j = 0; j < length; j++)
            {
                if (i >= matrix[j].coefficients.length)
                {
                    continue;
                }
                if (j < coefficients.length)
                {
                    int scalarTerm = field.mult(matrix[j].coefficients[i],
                        coefficients[j]);
                    resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
                }
            }
        }

        // compute the square root of each entry of the result coefficients
        for (int i = 0; i < length; i++)
        {
            resultCoeff[i] = field.sqRoot(resultCoeff[i]);
        }

        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Compute the result of the division of this polynomial by another
     * polynomial modulo a third polynomial.
     *
     * @param divisor the divisor
     * @param modulus the reduction polynomial
     * @return this * divisor^(-1) mod modulus
     */
    public PolynomialGF2mSmallM modDiv(PolynomialGF2mSmallM divisor,
                                       PolynomialGF2mSmallM modulus)
    {
        int[] resultCoeff = modDiv(coefficients, divisor.coefficients,
            modulus.coefficients);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Compute the result of the division of two polynomials modulo a third
     * polynomial over the field GF(2^m).
     *
     * @param a the first polynomial
     * @param b the second polynomial
     * @param g the reduction polynomial
     * @return a * b^(-1) mod g
     */
    private int[] modDiv(int[] a, int[] b, int[] g)
    {
        int[] r0 = normalForm(g);
        int[] r1 = mod(b, g);
        int[] s0 = {0};
        int[] s1 = mod(a, g);
        int[] s2;
        int[][] q;
        while (computeDegree(r1) != -1)
        {
            q = div(r0, r1);
            r0 = normalForm(r1);
            r1 = normalForm(q[1]);
            s2 = add(s0, modMultiply(q[0], s1, g));
            s0 = normalForm(s1);
            s1 = normalForm(s2);

        }
        int hc = headCoefficient(r0);
        s0 = multWithElement(s0, field.inverse(hc));
        return s0;
    }

    /**
     * Compute the inverse of this polynomial modulo the given polynomial.
     *
     * @param a the reduction polynomial
     * @return this^(-1) mod a
     */
    public PolynomialGF2mSmallM modInverse(PolynomialGF2mSmallM a)
    {
        int[] unit = {1};
        int[] resultCoeff = modDiv(unit, coefficients, a.coefficients);
        return new PolynomialGF2mSmallM(field, resultCoeff);
    }

    /**
     * Compute a polynomial pair (a,b) from this polynomial and the given
     * polynomial g with the property b*this = a mod g and deg(a)<=deg(g)/2.
     *
     * @param g the reduction polynomial
     * @return PolynomialGF2mSmallM[] {a,b} with b*this = a mod g and deg(a)<=
     *         deg(g)/2
     */
    public PolynomialGF2mSmallM[] modPolynomialToFracton(PolynomialGF2mSmallM g)
    {
        int dg = g.degree >> 1;
        int[] a0 = normalForm(g.coefficients);
        int[] a1 = mod(coefficients, g.coefficients);
        int[] b0 = {0};
        int[] b1 = {1};
        while (computeDegree(a1) > dg)
        {
            int[][] q = div(a0, a1);
            a0 = a1;
            a1 = q[1];
            int[] b2 = add(b0, modMultiply(q[0], b1, g.coefficients));
            b0 = b1;
            b1 = b2;
        }

        return new PolynomialGF2mSmallM[]{
            new PolynomialGF2mSmallM(field, a1),
            new PolynomialGF2mSmallM(field, b1)};
    }

    /**
     * checks if given object is equal to this polynomial.
     * 

* The method returns false whenever the given object is not polynomial over * GF(2^m). * * @param other object * @return true or false */ public boolean equals(Object other) { if (other == null || !(other instanceof PolynomialGF2mSmallM)) { return false; } PolynomialGF2mSmallM p = (PolynomialGF2mSmallM)other; if ((field.equals(p.field)) && (degree == p.degree) && (isEqual(coefficients, p.coefficients))) { return true; } return false; } /** * Compare two polynomials given as int arrays. * * @param a the first polynomial * @param b the second polynomial * @return true if a and b represent the * same polynomials, false otherwise */ private static boolean isEqual(int[] a, int[] b) { int da = computeDegree(a); int db = computeDegree(b); if (da != db) { return false; } for (int i = 0; i <= da; i++) { if (a[i] != b[i]) { return false; } } return true; } /** * @return the hash code of this polynomial */ public int hashCode() { int hash = field.hashCode(); for (int j = 0; j < coefficients.length; j++) { hash = hash * 31 + coefficients[j]; } return hash; } /** * Returns a human readable form of the polynomial. *

* * @return a human readable form of the polynomial. */ public String toString() { String str = " Polynomial over " + field.toString() + ": \n"; for (int i = 0; i < coefficients.length; i++) { str = str + field.elementToStr(coefficients[i]) + "Y^" + i + "+"; } str = str + ";"; return str; } /** * Compute the degree of this polynomial. If this is the zero polynomial, * the degree is -1. */ private void computeDegree() { for (degree = coefficients.length - 1; degree >= 0 && coefficients[degree] == 0; degree--) { ; } } /** * Compute the degree of a polynomial. * * @param a the polynomial * @return the degree of the polynomial a. If a is * the zero polynomial, return -1. */ private static int computeDegree(int[] a) { int degree; for (degree = a.length - 1; degree >= 0 && a[degree] == 0; degree--) { ; } return degree; } /** * Strip leading zero coefficients from the given polynomial. * * @param a the polynomial * @return the reduced polynomial */ private static int[] normalForm(int[] a) { int d = computeDegree(a); // if a is the zero polynomial if (d == -1) { // return new zero polynomial return new int[1]; } // if a already is in normal form if (a.length == d + 1) { // return a clone of a return IntUtils.clone(a); } // else, reduce a int[] result = new int[d + 1]; System.arraycopy(a, 0, result, 0, d + 1); return result; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy