org.bouncycastle.crypto.generators.RSAKeyPairGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk15on Show documentation
Show all versions of bcprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 and up.
package org.bouncycastle.crypto.generators;
import java.math.BigInteger;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
import org.bouncycastle.crypto.KeyGenerationParameters;
import org.bouncycastle.crypto.params.RSAKeyGenerationParameters;
import org.bouncycastle.crypto.params.RSAKeyParameters;
import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters;
import org.bouncycastle.math.ec.WNafUtil;
/**
* an RSA key pair generator.
*/
public class RSAKeyPairGenerator
implements AsymmetricCipherKeyPairGenerator
{
private static final BigInteger ONE = BigInteger.valueOf(1);
private RSAKeyGenerationParameters param;
public void init(KeyGenerationParameters param)
{
this.param = (RSAKeyGenerationParameters)param;
}
public AsymmetricCipherKeyPair generateKeyPair()
{
AsymmetricCipherKeyPair result = null;
boolean done = false;
//
// p and q values should have a length of half the strength in bits
//
int strength = param.getStrength();
int pbitlength = (strength + 1) / 2;
int qbitlength = strength - pbitlength;
int mindiffbits = strength / 3;
int minWeight = strength >> 2;
// d lower bound is 2^(strength / 2)
BigInteger dLowerBound = BigInteger.valueOf(2).pow(strength / 2);
while (!done)
{
BigInteger p, q, n, d, e, pSub1, qSub1, gcd, lcm;
e = param.getPublicExponent();
// TODO Consider generating safe primes for p, q (see DHParametersHelper.generateSafePrimes)
// (then p-1 and q-1 will not consist of only small factors - see "Pollard's algorithm")
p = chooseRandomPrime(pbitlength, e);
//
// generate a modulus of the required length
//
for (; ; )
{
q = chooseRandomPrime(qbitlength, e);
// p and q should not be too close together (or equal!)
BigInteger diff = q.subtract(p).abs();
if (diff.bitLength() < mindiffbits)
{
continue;
}
//
// calculate the modulus
//
n = p.multiply(q);
if (n.bitLength() != strength)
{
//
// if we get here our primes aren't big enough, make the largest
// of the two p and try again
//
p = p.max(q);
continue;
}
/*
* Require a minimum weight of the NAF representation, since low-weight composites may
* be weak against a version of the number-field-sieve for factoring.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtil.getNafWeight(n) < minWeight)
{
p = chooseRandomPrime(pbitlength, e);
continue;
}
break;
}
if (p.compareTo(q) < 0)
{
gcd = p;
p = q;
q = gcd;
}
pSub1 = p.subtract(ONE);
qSub1 = q.subtract(ONE);
gcd = pSub1.gcd(qSub1);
lcm = pSub1.divide(gcd).multiply(qSub1);
//
// calculate the private exponent
//
d = e.modInverse(lcm);
if (d.compareTo(dLowerBound) <= 0)
{
continue;
}
else
{
done = true;
}
//
// calculate the CRT factors
//
BigInteger dP, dQ, qInv;
dP = d.remainder(pSub1);
dQ = d.remainder(qSub1);
qInv = q.modInverse(p);
result = new AsymmetricCipherKeyPair(
new RSAKeyParameters(false, n, e),
new RSAPrivateCrtKeyParameters(n, e, d, p, q, dP, dQ, qInv));
}
return result;
}
/**
* Choose a random prime value for use with RSA
*
* @param bitlength the bit-length of the returned prime
* @param e the RSA public exponent
* @return a prime p, with (p-1) relatively prime to e
*/
protected BigInteger chooseRandomPrime(int bitlength, BigInteger e)
{
for (;;)
{
BigInteger p = new BigInteger(bitlength, 1, param.getRandom());
if (p.mod(e).equals(ONE))
{
continue;
}
if (!p.isProbablePrime(param.getCertainty()))
{
continue;
}
if (!e.gcd(p.subtract(ONE)).equals(ONE))
{
continue;
}
return p;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy