org.bouncycastle.math.ec.custom.sec.SecP256R1Point Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk15on Show documentation
Show all versions of bcprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 and up.
package org.bouncycastle.math.ec.custom.sec;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat256;
public class SecP256R1Point extends ECPoint.AbstractFp
{
SecP256R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
{
super(curve, x, y);
}
SecP256R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
super(curve, x, y, zs);
}
protected ECPoint detach()
{
return new SecP256R1Point(null, getAffineXCoord(), getAffineYCoord());
}
public ECPoint add(ECPoint b)
{
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return this;
}
if (this == b)
{
return twice();
}
ECCurve curve = this.getCurve();
SecP256R1FieldElement X1 = (SecP256R1FieldElement)this.x, Y1 = (SecP256R1FieldElement)this.y;
SecP256R1FieldElement X2 = (SecP256R1FieldElement)b.getXCoord(), Y2 = (SecP256R1FieldElement)b.getYCoord();
SecP256R1FieldElement Z1 = (SecP256R1FieldElement)this.zs[0];
SecP256R1FieldElement Z2 = (SecP256R1FieldElement)b.getZCoord(0);
int c;
int[] tt1 = Nat256.createExt();
int[] t2 = Nat256.create();
int[] t3 = Nat256.create();
int[] t4 = Nat256.create();
boolean Z1IsOne = Z1.isOne();
int[] U2, S2;
if (Z1IsOne)
{
U2 = X2.x;
S2 = Y2.x;
}
else
{
S2 = t3;
SecP256R1Field.square(Z1.x, S2);
U2 = t2;
SecP256R1Field.multiply(S2, X2.x, U2);
SecP256R1Field.multiply(S2, Z1.x, S2);
SecP256R1Field.multiply(S2, Y2.x, S2);
}
boolean Z2IsOne = Z2.isOne();
int[] U1, S1;
if (Z2IsOne)
{
U1 = X1.x;
S1 = Y1.x;
}
else
{
S1 = t4;
SecP256R1Field.square(Z2.x, S1);
U1 = tt1;
SecP256R1Field.multiply(S1, X1.x, U1);
SecP256R1Field.multiply(S1, Z2.x, S1);
SecP256R1Field.multiply(S1, Y1.x, S1);
}
int[] H = Nat256.create();
SecP256R1Field.subtract(U1, U2, H);
int[] R = t2;
SecP256R1Field.subtract(S1, S2, R);
// Check if b == this or b == -this
if (Nat256.isZero(H))
{
if (Nat256.isZero(R))
{
// this == b, i.e. this must be doubled
return this.twice();
}
// this == -b, i.e. the result is the point at infinity
return curve.getInfinity();
}
int[] HSquared = t3;
SecP256R1Field.square(H, HSquared);
int[] G = Nat256.create();
SecP256R1Field.multiply(HSquared, H, G);
int[] V = t3;
SecP256R1Field.multiply(HSquared, U1, V);
SecP256R1Field.negate(G, G);
Nat256.mul(S1, G, tt1);
c = Nat256.addBothTo(V, V, G);
SecP256R1Field.reduce32(c, G);
SecP256R1FieldElement X3 = new SecP256R1FieldElement(t4);
SecP256R1Field.square(R, X3.x);
SecP256R1Field.subtract(X3.x, G, X3.x);
SecP256R1FieldElement Y3 = new SecP256R1FieldElement(G);
SecP256R1Field.subtract(V, X3.x, Y3.x);
SecP256R1Field.multiplyAddToExt(Y3.x, R, tt1);
SecP256R1Field.reduce(tt1, Y3.x);
SecP256R1FieldElement Z3 = new SecP256R1FieldElement(H);
if (!Z1IsOne)
{
SecP256R1Field.multiply(Z3.x, Z1.x, Z3.x);
}
if (!Z2IsOne)
{
SecP256R1Field.multiply(Z3.x, Z2.x, Z3.x);
}
ECFieldElement[] zs = new ECFieldElement[]{ Z3 };
return new SecP256R1Point(curve, X3, Y3, zs);
}
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
SecP256R1FieldElement Y1 = (SecP256R1FieldElement)this.y;
if (Y1.isZero())
{
return curve.getInfinity();
}
SecP256R1FieldElement X1 = (SecP256R1FieldElement)this.x, Z1 = (SecP256R1FieldElement)this.zs[0];
int c;
int[] t1 = Nat256.create();
int[] t2 = Nat256.create();
int[] Y1Squared = Nat256.create();
SecP256R1Field.square(Y1.x, Y1Squared);
int[] T = Nat256.create();
SecP256R1Field.square(Y1Squared, T);
boolean Z1IsOne = Z1.isOne();
int[] Z1Squared = Z1.x;
if (!Z1IsOne)
{
Z1Squared = t2;
SecP256R1Field.square(Z1.x, Z1Squared);
}
SecP256R1Field.subtract(X1.x, Z1Squared, t1);
int[] M = t2;
SecP256R1Field.add(X1.x, Z1Squared, M);
SecP256R1Field.multiply(M, t1, M);
c = Nat256.addBothTo(M, M, M);
SecP256R1Field.reduce32(c, M);
int[] S = Y1Squared;
SecP256R1Field.multiply(Y1Squared, X1.x, S);
c = Nat.shiftUpBits(8, S, 2, 0);
SecP256R1Field.reduce32(c, S);
c = Nat.shiftUpBits(8, T, 3, 0, t1);
SecP256R1Field.reduce32(c, t1);
SecP256R1FieldElement X3 = new SecP256R1FieldElement(T);
SecP256R1Field.square(M, X3.x);
SecP256R1Field.subtract(X3.x, S, X3.x);
SecP256R1Field.subtract(X3.x, S, X3.x);
SecP256R1FieldElement Y3 = new SecP256R1FieldElement(S);
SecP256R1Field.subtract(S, X3.x, Y3.x);
SecP256R1Field.multiply(Y3.x, M, Y3.x);
SecP256R1Field.subtract(Y3.x, t1, Y3.x);
SecP256R1FieldElement Z3 = new SecP256R1FieldElement(M);
SecP256R1Field.twice(Y1.x, Z3.x);
if (!Z1IsOne)
{
SecP256R1Field.multiply(Z3.x, Z1.x, Z3.x);
}
return new SecP256R1Point(curve, X3, Y3, new ECFieldElement[]{ Z3 });
}
public ECPoint twicePlus(ECPoint b)
{
if (this == b)
{
return threeTimes();
}
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return twice();
}
ECFieldElement Y1 = this.y;
if (Y1.isZero())
{
return b;
}
return twice().add(b);
}
public ECPoint threeTimes()
{
if (this.isInfinity() || this.y.isZero())
{
return this;
}
// NOTE: Be careful about recursions between twicePlus and threeTimes
return twice().add(this);
}
public ECPoint negate()
{
if (this.isInfinity())
{
return this;
}
return new SecP256R1Point(curve, this.x, this.y.negate(), this.zs);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy