org.bouncycastle.math.ec.custom.sec.SecP256K1Field Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk15on Show documentation
Show all versions of bcprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 and up.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat256;
import org.bouncycastle.util.Pack;
public class SecP256K1Field
{
// 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
static final int[] P = new int[]{ 0xFFFFFC2F, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF };
static final int[] PExt = new int[]{ 0x000E90A1, 0x000007A2, 0x00000001, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0xFFFFF85E, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF };
private static final int[] PExtInv = new int[]{ 0xFFF16F5F, 0xFFFFF85D, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x000007A1, 0x00000002 };
private static final int P7 = 0xFFFFFFFF;
private static final int PExt15 = 0xFFFFFFFF;
private static final int PInv33 = 0x3D1;
public static void add(int[] x, int[] y, int[] z)
{
int c = Nat256.add(x, y, z);
if (c != 0 || (z[7] == P7 && Nat256.gte(z, P)))
{
Nat.add33To(8, PInv33, z);
}
}
public static void addExt(int[] xx, int[] yy, int[] zz)
{
int c = Nat.add(16, xx, yy, zz);
if (c != 0 || (zz[15] == PExt15 && Nat.gte(16, zz, PExt)))
{
if (Nat.addTo(PExtInv.length, PExtInv, zz) != 0)
{
Nat.incAt(16, zz, PExtInv.length);
}
}
}
public static void addOne(int[] x, int[] z)
{
int c = Nat.inc(8, x, z);
if (c != 0 || (z[7] == P7 && Nat256.gte(z, P)))
{
Nat.add33To(8, PInv33, z);
}
}
public static int[] fromBigInteger(BigInteger x)
{
int[] z = Nat256.fromBigInteger(x);
if (z[7] == P7 && Nat256.gte(z, P))
{
Nat256.subFrom(P, z);
}
return z;
}
public static void half(int[] x, int[] z)
{
if ((x[0] & 1) == 0)
{
Nat.shiftDownBit(8, x, 0, z);
}
else
{
int c = Nat256.add(x, P, z);
Nat.shiftDownBit(8, z, c);
}
}
public static void inv(int[] x, int[] z)
{
/*
* Raise this element to the exponent 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 3
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 223 1s } { 1 0s } { 22 1s } { 4 0s } { 1 1s } { 1 0s } { 2 1s } { 1 0s } { 1 1s }
*
* Therefore we need an addition chain containing 1, 2, 22, 223 (the lengths of the repunits)
* We use: [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
if (0 != isZero(x))
{
throw new IllegalArgumentException("'x' cannot be 0");
}
int[] x1 = x;
int[] x2 = Nat256.create();
square(x1, x2);
multiply(x2, x1, x2);
int[] x3 = Nat256.create();
square(x2, x3);
multiply(x3, x1, x3);
int[] x6 = Nat256.create();
squareN(x3, 3, x6);
multiply(x6, x3, x6);
int[] x9 = x6;
squareN(x6, 3, x9);
multiply(x9, x3, x9);
int[] x11 = x9;
squareN(x9, 2, x11);
multiply(x11, x2, x11);
int[] x22 = Nat256.create();
squareN(x11, 11, x22);
multiply(x22, x11, x22);
int[] x44 = x11;
squareN(x22, 22, x44);
multiply(x44, x22, x44);
int[] x88 = Nat256.create();
squareN(x44, 44, x88);
multiply(x88, x44, x88);
int[] x176 = Nat256.create();
squareN(x88, 88, x176);
multiply(x176, x88, x176);
int[] x220 = x88;
squareN(x176, 44, x220);
multiply(x220, x44, x220);
int[] x223 = x44;
squareN(x220, 3, x223);
multiply(x223, x3, x223);
int[] t = x223;
squareN(t, 23, t);
multiply(t, x22, t);
squareN(t, 5, t);
multiply(t, x1, t);
squareN(t, 3, t);
multiply(t, x2, t);
squareN(t, 2, t);
// NOTE that x1 and z could be the same array
multiply(x1, t, z);
}
public static int isZero(int[] x)
{
int d = 0;
for (int i = 0; i < 8; ++i)
{
d |= x[i];
}
d = (d >>> 1) | (d & 1);
return (d - 1) >> 31;
}
public static void multiply(int[] x, int[] y, int[] z)
{
int[] tt = Nat256.createExt();
Nat256.mul(x, y, tt);
reduce(tt, z);
}
public static void multiplyAddToExt(int[] x, int[] y, int[] zz)
{
int c = Nat256.mulAddTo(x, y, zz);
if (c != 0 || (zz[15] == PExt15 && Nat.gte(16, zz, PExt)))
{
if (Nat.addTo(PExtInv.length, PExtInv, zz) != 0)
{
Nat.incAt(16, zz, PExtInv.length);
}
}
}
public static void negate(int[] x, int[] z)
{
if (0 != isZero(x))
{
Nat256.sub(P, P, z);
}
else
{
Nat256.sub(P, x, z);
}
}
public static void random(SecureRandom r, int[] z)
{
byte[] bb = new byte[8 * 4];
do
{
r.nextBytes(bb);
Pack.littleEndianToInt(bb, 0, z, 0, 8);
}
while (0 == Nat.lessThan(8, z, P));
}
public static void randomMult(SecureRandom r, int[] z)
{
do
{
random(r, z);
}
while (0 != isZero(z));
}
public static void reduce(int[] xx, int[] z)
{
long cc = Nat256.mul33Add(PInv33, xx, 8, xx, 0, z, 0);
int c = Nat256.mul33DWordAdd(PInv33, cc, z, 0);
// assert c == 0L || c == 1L;
if (c != 0 || (z[7] == P7 && Nat256.gte(z, P)))
{
Nat.add33To(8, PInv33, z);
}
}
public static void reduce32(int x, int[] z)
{
if ((x != 0 && Nat256.mul33WordAdd(PInv33, x, z, 0) != 0)
|| (z[7] == P7 && Nat256.gte(z, P)))
{
Nat.add33To(8, PInv33, z);
}
}
public static void square(int[] x, int[] z)
{
int[] tt = Nat256.createExt();
Nat256.square(x, tt);
reduce(tt, z);
}
public static void squareN(int[] x, int n, int[] z)
{
// assert n > 0;
int[] tt = Nat256.createExt();
Nat256.square(x, tt);
reduce(tt, z);
while (--n > 0)
{
Nat256.square(z, tt);
reduce(tt, z);
}
}
public static void subtract(int[] x, int[] y, int[] z)
{
int c = Nat256.sub(x, y, z);
if (c != 0)
{
Nat.sub33From(8, PInv33, z);
}
}
public static void subtractExt(int[] xx, int[] yy, int[] zz)
{
int c = Nat.sub(16, xx, yy, zz);
if (c != 0)
{
if (Nat.subFrom(PExtInv.length, PExtInv, zz) != 0)
{
Nat.decAt(16, zz, PExtInv.length);
}
}
}
public static void twice(int[] x, int[] z)
{
int c = Nat.shiftUpBit(8, x, 0, z);
if (c != 0 || (z[7] == P7 && Nat256.gte(z, P)))
{
Nat.add33To(8, PInv33, z);
}
}
}