All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.digests.Blake2sDigest Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 and up.

The newest version!
package org.bouncycastle.crypto.digests;

/*
  The BLAKE2 cryptographic hash function was designed by Jean-
  Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn, and Christian
  Winnerlein.

  Reference Implementation and Description can be found at: https://blake2.net/
  RFC: https://tools.ietf.org/html/rfc7693

  This implementation does not support the Tree Hashing Mode.

  For unkeyed hashing, developers adapting BLAKE2 to ASN.1 - based
  message formats SHOULD use the OID tree at x = 1.3.6.1.4.1.1722.12.2.

         Algorithm     | Target | Collision | Hash | Hash ASN.1 |
            Identifier |  Arch  |  Security |  nn  | OID Suffix |
        ---------------+--------+-----------+------+------------+
         id-blake2s128 | 32-bit |   2**64   |  16  |   x.2.4    |
         id-blake2s160 | 32-bit |   2**80   |  20  |   x.2.5    |
         id-blake2s224 | 32-bit |   2**112  |  28  |   x.2.7    |
         id-blake2s256 | 32-bit |   2**128  |  32  |   x.2.8    |
        ---------------+--------+-----------+------+------------+
 */

import org.bouncycastle.crypto.ExtendedDigest;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Pack;

/**
 * Implementation of the cryptographic hash function BLAKE2s.
 * 

* BLAKE2s offers a built-in keying mechanism to be used directly * for authentication ("Prefix-MAC") rather than a HMAC construction. *

* BLAKE2s offers a built-in support for a salt for randomized hashing * and a personal string for defining a unique hash function for each application. *

* BLAKE2s is optimized for 32-bit platforms and produces digests of any size * between 1 and 32 bytes. */ public class Blake2sDigest implements ExtendedDigest { /** * BLAKE2s Initialization Vector **/ private static final int[] blake2s_IV = // Produced from the square root of primes 2, 3, 5, 7, 11, 13, 17, 19. // The same as SHA-256 IV. { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; /** * Message word permutations **/ private static final byte[][] blake2s_sigma = { {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3}, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4}, {7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8}, {9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13}, {2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9}, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11}, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10}, {6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5}, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0} }; private static final int ROUNDS = 10; // to use for Catenas H' private static final int BLOCK_LENGTH_BYTES = 64;// bytes // General parameters: private int digestLength = 32; // 1- 32 bytes private int keyLength = 0; // 0 - 32 bytes for keyed hashing for MAC private byte[] salt = null; private byte[] personalization = null; private byte[] key = null; // Tree hashing parameters: // The Tree Hashing Mode is not supported but these are used for // the XOF implementation private int fanout = 1; // 0-255 private int depth = 1; // 0-255 private int leafLength = 0; private long nodeOffset = 0L; private int nodeDepth = 0; private int innerHashLength = 0; /** * Whenever this buffer overflows, it will be processed in the compress() * function. For performance issues, long messages will not use this buffer. */ private byte[] buffer = null; /** * Position of last inserted byte **/ private int bufferPos = 0;// a value from 0 up to BLOCK_LENGTH_BYTES /** * Internal state, in the BLAKE2 paper it is called v **/ private int[] internalState = new int[16]; /** * State vector, in the BLAKE2 paper it is called h **/ private int[] chainValue = null; // counter (counts bytes): Length up to 2^64 are supported /** * holds least significant bits of counter **/ private int t0 = 0; /** * holds most significant bits of counter **/ private int t1 = 0; /** * finalization flag, for last block: ~0 **/ private int f0 = 0; // For Tree Hashing Mode, not used here: // private long f1 = 0L; // finalization flag, for last node: ~0L /** * BLAKE2s-256 for hashing. */ public Blake2sDigest() { this(256); } public Blake2sDigest(Blake2sDigest digest) { this.bufferPos = digest.bufferPos; this.buffer = Arrays.clone(digest.buffer); this.keyLength = digest.keyLength; this.key = Arrays.clone(digest.key); this.digestLength = digest.digestLength; this.internalState = Arrays.clone(internalState); this.chainValue = Arrays.clone(digest.chainValue); this.t0 = digest.t0; this.t1 = digest.t1; this.f0 = digest.f0; this.salt = Arrays.clone(digest.salt); this.personalization = Arrays.clone(digest.personalization); this.fanout = digest.fanout; this.depth = digest.depth; this.leafLength = digest.leafLength; this.nodeOffset = digest.nodeOffset; this.nodeDepth = digest.nodeDepth; this.innerHashLength = digest.innerHashLength; } /** * BLAKE2s for hashing. * * @param digestBits the desired digest length in bits. Must be a multiple of 8 and less than 256. */ public Blake2sDigest(int digestBits) { if (digestBits < 8 || digestBits > 256 || digestBits % 8 != 0) { throw new IllegalArgumentException( "BLAKE2s digest bit length must be a multiple of 8 and not greater than 256"); } digestLength = digestBits / 8; init(null, null, null); } /** * BLAKE2s for authentication ("Prefix-MAC mode"). *

* After calling the doFinal() method, the key will remain to be used for * further computations of this instance. The key can be overwritten using * the clearKey() method. * * @param key a key up to 32 bytes or null */ public Blake2sDigest(byte[] key) { init(null, null, key); } /** * BLAKE2s with key, required digest length, salt and personalization. *

* After calling the doFinal() method, the key, the salt and the personal * string will remain and might be used for further computations with this * instance. The key can be overwritten using the clearKey() method, the * salt (pepper) can be overwritten using the clearSalt() method. * * @param key a key up to 32 bytes or null * @param digestBytes from 1 up to 32 bytes * @param salt 8 bytes or null * @param personalization 8 bytes or null */ public Blake2sDigest(byte[] key, int digestBytes, byte[] salt, byte[] personalization) { if (digestBytes < 1 || digestBytes > 32) { throw new IllegalArgumentException( "Invalid digest length (required: 1 - 32)"); } digestLength = digestBytes; init(salt, personalization, key); } // XOF root hash parameters Blake2sDigest(int digestBytes, byte[] key, byte[] salt, byte[] personalization, long offset) { digestLength = digestBytes; nodeOffset = offset; init(salt, personalization, key); } // XOF internal hash parameters Blake2sDigest(int digestBytes, int hashLength, long offset) { digestLength = digestBytes; nodeOffset = offset; fanout = 0; depth = 0; leafLength = hashLength; innerHashLength = hashLength; nodeDepth = 0; init(null, null, null); } // initialize the digest's parameters private void init(byte[] salt, byte[] personalization, byte[] key) { buffer = new byte[BLOCK_LENGTH_BYTES]; if (key != null && key.length > 0) { if (key.length > 32) { throw new IllegalArgumentException( "Keys > 32 bytes are not supported"); } this.key = new byte[key.length]; System.arraycopy(key, 0, this.key, 0, key.length); keyLength = key.length; System.arraycopy(key, 0, buffer, 0, key.length); bufferPos = BLOCK_LENGTH_BYTES; // zero padding } if (chainValue == null) { chainValue = new int[8]; chainValue[0] = blake2s_IV[0] ^ (digestLength | (keyLength << 8) | ((fanout << 16) | (depth << 24))); chainValue[1] = blake2s_IV[1] ^ leafLength; int nofHi = (int)(nodeOffset >> 32); int nofLo = (int)nodeOffset; chainValue[2] = blake2s_IV[2] ^ nofLo; chainValue[3] = blake2s_IV[3] ^ (nofHi | (nodeDepth << 16) | (innerHashLength << 24)); chainValue[4] = blake2s_IV[4]; chainValue[5] = blake2s_IV[5]; if (salt != null) { if (salt.length != 8) { throw new IllegalArgumentException( "Salt length must be exactly 8 bytes"); } this.salt = new byte[8]; System.arraycopy(salt, 0, this.salt, 0, salt.length); chainValue[4] ^= Pack.littleEndianToInt(salt, 0); chainValue[5] ^= Pack.littleEndianToInt(salt, 4); } chainValue[6] = blake2s_IV[6]; chainValue[7] = blake2s_IV[7]; if (personalization != null) { if (personalization.length != 8) { throw new IllegalArgumentException( "Personalization length must be exactly 8 bytes"); } this.personalization = new byte[8]; System.arraycopy(personalization, 0, this.personalization, 0, personalization.length); chainValue[6] ^= Pack.littleEndianToInt(personalization, 0); chainValue[7] ^= Pack.littleEndianToInt(personalization, 4); } } } private void initializeInternalState() { // initialize v: System.arraycopy(chainValue, 0, internalState, 0, chainValue.length); System.arraycopy(blake2s_IV, 0, internalState, chainValue.length, 4); internalState[12] = t0 ^ blake2s_IV[4]; internalState[13] = t1 ^ blake2s_IV[5]; internalState[14] = f0 ^ blake2s_IV[6]; internalState[15] = blake2s_IV[7];// ^ f1 with f1 = 0 } /** * Update the message digest with a single byte. * * @param b the input byte to be entered. */ public void update(byte b) { int remainingLength; // left bytes of buffer // process the buffer if full else add to buffer: remainingLength = BLOCK_LENGTH_BYTES - bufferPos; if (remainingLength == 0) { // full buffer t0 += BLOCK_LENGTH_BYTES; if (t0 == 0) { // if message > 2^32 t1++; } compress(buffer, 0); Arrays.fill(buffer, (byte)0);// clear buffer buffer[0] = b; bufferPos = 1; } else { buffer[bufferPos] = b; bufferPos++; } } /** * Update the message digest with a block of bytes. * * @param message the byte array containing the data. * @param offset the offset into the byte array where the data starts. * @param len the length of the data. */ public void update(byte[] message, int offset, int len) { if (message == null || len == 0) { return; } int remainingLength = 0; // left bytes of buffer if (bufferPos != 0) { // commenced, incomplete buffer // complete the buffer: remainingLength = BLOCK_LENGTH_BYTES - bufferPos; if (remainingLength < len) { // full buffer + at least 1 byte System.arraycopy(message, offset, buffer, bufferPos, remainingLength); t0 += BLOCK_LENGTH_BYTES; if (t0 == 0) { // if message > 2^32 t1++; } compress(buffer, 0); bufferPos = 0; Arrays.fill(buffer, (byte)0);// clear buffer } else { System.arraycopy(message, offset, buffer, bufferPos, len); bufferPos += len; return; } } // process blocks except last block (also if last block is full) int messagePos; int blockWiseLastPos = offset + len - BLOCK_LENGTH_BYTES; for (messagePos = offset + remainingLength; messagePos < blockWiseLastPos; messagePos += BLOCK_LENGTH_BYTES) { // block wise 64 bytes // without buffer: t0 += BLOCK_LENGTH_BYTES; if (t0 == 0) { t1++; } compress(message, messagePos); } // fill the buffer with left bytes, this might be a full block System.arraycopy(message, messagePos, buffer, 0, offset + len - messagePos); bufferPos += offset + len - messagePos; } /** * Close the digest, producing the final digest value. The doFinal() call * leaves the digest reset. Key, salt and personal string remain. * * @param out the array the digest is to be copied into. * @param outOffset the offset into the out array the digest is to start at. */ public int doFinal(byte[] out, int outOffset) { f0 = 0xFFFFFFFF; t0 += bufferPos; // bufferPos may be < 64, so (t0 == 0) does not work // for 2^32 < message length > 2^32 - 63 if ((t0 < 0) && (bufferPos > -t0)) { t1++; } compress(buffer, 0); Arrays.fill(buffer, (byte)0);// Holds eventually the key if input is null Arrays.fill(internalState, 0); for (int i = 0; i < chainValue.length && (i * 4 < digestLength); i++) { byte[] bytes = Pack.intToLittleEndian(chainValue[i]); if (i * 4 < digestLength - 4) { System.arraycopy(bytes, 0, out, outOffset + i * 4, 4); } else { System.arraycopy(bytes, 0, out, outOffset + i * 4, digestLength - (i * 4)); } } Arrays.fill(chainValue, 0); reset(); return digestLength; } /** * Reset the digest back to its initial state. The key, the salt and the * personal string will remain for further computations. */ public void reset() { bufferPos = 0; f0 = 0; t0 = 0; t1 = 0; chainValue = null; Arrays.fill(buffer, (byte)0); if (key != null) { System.arraycopy(key, 0, buffer, 0, key.length); bufferPos = BLOCK_LENGTH_BYTES; // zero padding } init(this.salt, this.personalization, this.key); } private void compress(byte[] message, int messagePos) { initializeInternalState(); int[] m = new int[16]; for (int j = 0; j < 16; j++) { m[j] = Pack.littleEndianToInt(message, messagePos + j * 4); } for (int round = 0; round < ROUNDS; round++) { // G apply to columns of internalState:m[blake2s_sigma[round][2 * // blockPos]] /+1 G(m[blake2s_sigma[round][0]], m[blake2s_sigma[round][1]], 0, 4, 8, 12); G(m[blake2s_sigma[round][2]], m[blake2s_sigma[round][3]], 1, 5, 9, 13); G(m[blake2s_sigma[round][4]], m[blake2s_sigma[round][5]], 2, 6, 10, 14); G(m[blake2s_sigma[round][6]], m[blake2s_sigma[round][7]], 3, 7, 11, 15); // G apply to diagonals of internalState: G(m[blake2s_sigma[round][8]], m[blake2s_sigma[round][9]], 0, 5, 10, 15); G(m[blake2s_sigma[round][10]], m[blake2s_sigma[round][11]], 1, 6, 11, 12); G(m[blake2s_sigma[round][12]], m[blake2s_sigma[round][13]], 2, 7, 8, 13); G(m[blake2s_sigma[round][14]], m[blake2s_sigma[round][15]], 3, 4, 9, 14); } // update chain values: for (int offset = 0; offset < chainValue.length; offset++) { chainValue[offset] = chainValue[offset] ^ internalState[offset] ^ internalState[offset + 8]; } } private void G(int m1, int m2, int posA, int posB, int posC, int posD) { internalState[posA] = internalState[posA] + internalState[posB] + m1; internalState[posD] = rotr32(internalState[posD] ^ internalState[posA], 16); internalState[posC] = internalState[posC] + internalState[posD]; internalState[posB] = rotr32(internalState[posB] ^ internalState[posC], 12); internalState[posA] = internalState[posA] + internalState[posB] + m2; internalState[posD] = rotr32(internalState[posD] ^ internalState[posA], 8); internalState[posC] = internalState[posC] + internalState[posD]; internalState[posB] = rotr32(internalState[posB] ^ internalState[posC], 7); } private int rotr32(int x, int rot) { return x >>> rot | (x << (32 - rot)); } /** * Return the algorithm name. * * @return the algorithm name */ public String getAlgorithmName() { return "BLAKE2s"; } /** * Return the size in bytes of the digest produced by this message digest. * * @return the size in bytes of the digest produced by this message digest. */ public int getDigestSize() { return digestLength; } /** * Return the size in bytes of the internal buffer the digest applies its * compression function to. * * @return byte length of the digest's internal buffer. */ public int getByteLength() { return BLOCK_LENGTH_BYTES; } /** * Overwrite the key if it is no longer used (zeroization). */ public void clearKey() { if (key != null) { Arrays.fill(key, (byte)0); Arrays.fill(buffer, (byte)0); } } /** * Overwrite the salt (pepper) if it is secret and no longer used * (zeroization). */ public void clearSalt() { if (salt != null) { Arrays.fill(salt, (byte)0); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy