org.bouncycastle.crypto.engines.ThreefishEngine Maven / Gradle / Ivy
Show all versions of bcprov-jdk15on Show documentation
package org.bouncycastle.crypto.engines;
import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.crypto.params.TweakableBlockCipherParameters;
/**
* Implementation of the Threefish tweakable large block cipher in 256, 512 and 1024 bit block
* sizes.
*
* This is the 1.3 version of Threefish defined in the Skein hash function submission to the NIST
* SHA-3 competition in October 2010.
*
* Threefish was designed by Niels Ferguson - Stefan Lucks - Bruce Schneier - Doug Whiting - Mihir
* Bellare - Tadayoshi Kohno - Jon Callas - Jesse Walker.
*
* This implementation inlines all round functions, unrolls 8 rounds, and uses 1.2k of static tables
* to speed up key schedule injection.
* 2 x block size state is retained by each cipher instance.
*/
public class ThreefishEngine
implements BlockCipher
{
/**
* 256 bit block size - Threefish-256
*/
public static final int BLOCKSIZE_256 = 256;
/**
* 512 bit block size - Threefish-512
*/
public static final int BLOCKSIZE_512 = 512;
/**
* 1024 bit block size - Threefish-1024
*/
public static final int BLOCKSIZE_1024 = 1024;
/**
* Size of the tweak in bytes (always 128 bit/16 bytes)
*/
private static final int TWEAK_SIZE_BYTES = 16;
private static final int TWEAK_SIZE_WORDS = TWEAK_SIZE_BYTES / 8;
/**
* Rounds in Threefish-256
*/
private static final int ROUNDS_256 = 72;
/**
* Rounds in Threefish-512
*/
private static final int ROUNDS_512 = 72;
/**
* Rounds in Threefish-1024
*/
private static final int ROUNDS_1024 = 80;
/**
* Max rounds of any of the variants
*/
private static final int MAX_ROUNDS = ROUNDS_1024;
/**
* Key schedule parity constant
*/
private static final long C_240 = 0x1BD11BDAA9FC1A22L;
/* Pre-calculated modulo arithmetic tables for key schedule lookups */
private static int[] MOD9 = new int[MAX_ROUNDS];
private static int[] MOD17 = new int[MOD9.length];
private static int[] MOD5 = new int[MOD9.length];
private static int[] MOD3 = new int[MOD9.length];
static
{
for (int i = 0; i < MOD9.length; i++)
{
MOD17[i] = i % 17;
MOD9[i] = i % 9;
MOD5[i] = i % 5;
MOD3[i] = i % 3;
}
}
/**
* Block size in bytes
*/
private int blocksizeBytes;
/**
* Block size in 64 bit words
*/
private int blocksizeWords;
/**
* Buffer for byte oriented processBytes to call internal word API
*/
private long[] currentBlock;
/**
* Tweak bytes (2 byte t1,t2, calculated t3 and repeat of t1,t2 for modulo free lookup
*/
private long[] t = new long[5];
/**
* Key schedule words
*/
private long[] kw;
/**
* The internal cipher implementation (varies by blocksize)
*/
private ThreefishCipher cipher;
private boolean forEncryption;
/**
* Constructs a new Threefish cipher, with a specified block size.
*
* @param blocksizeBits the block size in bits, one of {@link #BLOCKSIZE_256}, {@link #BLOCKSIZE_512},
* {@link #BLOCKSIZE_1024}.
*/
public ThreefishEngine(final int blocksizeBits)
{
this.blocksizeBytes = (blocksizeBits / 8);
this.blocksizeWords = (this.blocksizeBytes / 8);
this.currentBlock = new long[blocksizeWords];
/*
* Provide room for original key words, extended key word and repeat of key words for modulo
* free lookup of key schedule words.
*/
this.kw = new long[2 * blocksizeWords + 1];
switch (blocksizeBits)
{
case BLOCKSIZE_256:
cipher = new Threefish256Cipher(kw, t);
break;
case BLOCKSIZE_512:
cipher = new Threefish512Cipher(kw, t);
break;
case BLOCKSIZE_1024:
cipher = new Threefish1024Cipher(kw, t);
break;
default:
throw new IllegalArgumentException(
"Invalid blocksize - Threefish is defined with block size of 256, 512, or 1024 bits");
}
}
/**
* Initialise the engine.
*
* @param params an instance of {@link TweakableBlockCipherParameters}, or {@link KeyParameter} (to
* use a 0 tweak)
*/
public void init(boolean forEncryption, CipherParameters params)
throws IllegalArgumentException
{
final byte[] keyBytes;
final byte[] tweakBytes;
if (params instanceof TweakableBlockCipherParameters)
{
TweakableBlockCipherParameters tParams = (TweakableBlockCipherParameters)params;
keyBytes = tParams.getKey().getKey();
tweakBytes = tParams.getTweak();
}
else if (params instanceof KeyParameter)
{
keyBytes = ((KeyParameter)params).getKey();
tweakBytes = null;
}
else
{
throw new IllegalArgumentException("Invalid parameter passed to Threefish init - "
+ params.getClass().getName());
}
long[] keyWords = null;
long[] tweakWords = null;
if (keyBytes != null)
{
if (keyBytes.length != this.blocksizeBytes)
{
throw new IllegalArgumentException("Threefish key must be same size as block (" + blocksizeBytes
+ " bytes)");
}
keyWords = new long[blocksizeWords];
for (int i = 0; i < keyWords.length; i++)
{
keyWords[i] = bytesToWord(keyBytes, i * 8);
}
}
if (tweakBytes != null)
{
if (tweakBytes.length != TWEAK_SIZE_BYTES)
{
throw new IllegalArgumentException("Threefish tweak must be " + TWEAK_SIZE_BYTES + " bytes");
}
tweakWords = new long[]{bytesToWord(tweakBytes, 0), bytesToWord(tweakBytes, 8)};
}
init(forEncryption, keyWords, tweakWords);
}
/**
* Initialise the engine, specifying the key and tweak directly.
*
* @param forEncryption the cipher mode.
* @param key the words of the key, or null
to use the current key.
* @param tweak the 2 word (128 bit) tweak, or null
to use the current tweak.
*/
public void init(boolean forEncryption, final long[] key, final long[] tweak)
{
this.forEncryption = forEncryption;
if (key != null)
{
setKey(key);
}
if (tweak != null)
{
setTweak(tweak);
}
}
private void setKey(long[] key)
{
if (key.length != this.blocksizeWords)
{
throw new IllegalArgumentException("Threefish key must be same size as block (" + blocksizeWords
+ " words)");
}
/*
* Full subkey schedule is deferred to execution to avoid per cipher overhead (10k for 512,
* 20k for 1024).
*
* Key and tweak word sequences are repeated, and static MOD17/MOD9/MOD5/MOD3 calculations
* used, to avoid expensive mod computations during cipher operation.
*/
long knw = C_240;
for (int i = 0; i < blocksizeWords; i++)
{
kw[i] = key[i];
knw = knw ^ kw[i];
}
kw[blocksizeWords] = knw;
System.arraycopy(kw, 0, kw, blocksizeWords + 1, blocksizeWords);
}
private void setTweak(long[] tweak)
{
if (tweak.length != TWEAK_SIZE_WORDS)
{
throw new IllegalArgumentException("Tweak must be " + TWEAK_SIZE_WORDS + " words.");
}
/*
* Tweak schedule partially repeated to avoid mod computations during cipher operation
*/
t[0] = tweak[0];
t[1] = tweak[1];
t[2] = t[0] ^ t[1];
t[3] = t[0];
t[4] = t[1];
}
public String getAlgorithmName()
{
return "Threefish-" + (blocksizeBytes * 8);
}
public int getBlockSize()
{
return blocksizeBytes;
}
public void reset()
{
}
public int processBlock(byte[] in, int inOff, byte[] out, int outOff)
throws DataLengthException,
IllegalStateException
{
if ((inOff + blocksizeBytes) > in.length)
{
throw new DataLengthException("Input buffer too short");
}
if ((outOff + blocksizeBytes) > out.length)
{
throw new OutputLengthException("Output buffer too short");
}
for (int i = 0; i < blocksizeBytes; i += 8)
{
currentBlock[i >> 3] = bytesToWord(in, inOff + i);
}
processBlock(this.currentBlock, this.currentBlock);
for (int i = 0; i < blocksizeBytes; i += 8)
{
wordToBytes(this.currentBlock[i >> 3], out, outOff + i);
}
return blocksizeBytes;
}
/**
* Process a block of data represented as 64 bit words.
*
* @param in a block sized buffer of words to process.
* @param out a block sized buffer of words to receive the output of the operation.
* @return the number of 8 byte words processed (which will be the same as the block size).
* @throws DataLengthException if either the input or output is not block sized.
* @throws IllegalStateException if this engine is not initialised.
*/
public int processBlock(long[] in, long[] out)
throws DataLengthException, IllegalStateException
{
if (kw[blocksizeWords] == 0)
{
throw new IllegalStateException("Threefish engine not initialised");
}
if (in.length != blocksizeWords)
{
throw new DataLengthException("Input buffer too short");
}
if (out.length != blocksizeWords)
{
throw new OutputLengthException("Output buffer too short");
}
if (forEncryption)
{
cipher.encryptBlock(in, out);
}
else
{
cipher.decryptBlock(in, out);
}
return blocksizeWords;
}
/**
* Read a single 64 bit word from input in LSB first order.
*/
// At least package protected for efficient access from inner class
public static long bytesToWord(final byte[] bytes, final int off)
{
if ((off + 8) > bytes.length)
{
// Help the JIT avoid index checks
throw new IllegalArgumentException();
}
long word = 0;
int index = off;
word = (bytes[index++] & 0xffL);
word |= (bytes[index++] & 0xffL) << 8;
word |= (bytes[index++] & 0xffL) << 16;
word |= (bytes[index++] & 0xffL) << 24;
word |= (bytes[index++] & 0xffL) << 32;
word |= (bytes[index++] & 0xffL) << 40;
word |= (bytes[index++] & 0xffL) << 48;
word |= (bytes[index++] & 0xffL) << 56;
return word;
}
/**
* Write a 64 bit word to output in LSB first order.
*/
// At least package protected for efficient access from inner class
public static void wordToBytes(final long word, final byte[] bytes, final int off)
{
if ((off + 8) > bytes.length)
{
// Help the JIT avoid index checks
throw new IllegalArgumentException();
}
int index = off;
bytes[index++] = (byte)word;
bytes[index++] = (byte)(word >> 8);
bytes[index++] = (byte)(word >> 16);
bytes[index++] = (byte)(word >> 24);
bytes[index++] = (byte)(word >> 32);
bytes[index++] = (byte)(word >> 40);
bytes[index++] = (byte)(word >> 48);
bytes[index++] = (byte)(word >> 56);
}
/**
* Rotate left + xor part of the mix operation.
*/
// Package protected for efficient access from inner class
static long rotlXor(long x, int n, long xor)
{
return ((x << n) | (x >>> -n)) ^ xor;
}
/**
* Rotate xor + rotate right part of the unmix operation.
*/
// Package protected for efficient access from inner class
static long xorRotr(long x, int n, long xor)
{
long xored = x ^ xor;
return (xored >>> n) | (xored << -n);
}
private static abstract class ThreefishCipher
{
/**
* The extended + repeated tweak words
*/
protected final long[] t;
/**
* The extended + repeated key words
*/
protected final long[] kw;
protected ThreefishCipher(final long[] kw, final long[] t)
{
this.kw = kw;
this.t = t;
}
abstract void encryptBlock(long[] block, long[] out);
abstract void decryptBlock(long[] block, long[] out);
}
private static final class Threefish256Cipher
extends ThreefishCipher
{
/**
* Mix rotation constants defined in Skein 1.3 specification
*/
private static final int ROTATION_0_0 = 14, ROTATION_0_1 = 16;
private static final int ROTATION_1_0 = 52, ROTATION_1_1 = 57;
private static final int ROTATION_2_0 = 23, ROTATION_2_1 = 40;
private static final int ROTATION_3_0 = 5, ROTATION_3_1 = 37;
private static final int ROTATION_4_0 = 25, ROTATION_4_1 = 33;
private static final int ROTATION_5_0 = 46, ROTATION_5_1 = 12;
private static final int ROTATION_6_0 = 58, ROTATION_6_1 = 22;
private static final int ROTATION_7_0 = 32, ROTATION_7_1 = 32;
public Threefish256Cipher(long[] kw, long[] t)
{
super(kw, t);
}
void encryptBlock(long[] block, long[] out)
{
final long[] kw = this.kw;
final long[] t = this.t;
final int[] mod5 = MOD5;
final int[] mod3 = MOD3;
/* Help the JIT avoid index bounds checks */
if (kw.length != 9)
{
throw new IllegalArgumentException();
}
if (t.length != 5)
{
throw new IllegalArgumentException();
}
/*
* Read 4 words of plaintext data, not using arrays for cipher state
*/
long b0 = block[0];
long b1 = block[1];
long b2 = block[2];
long b3 = block[3];
/*
* First subkey injection.
*/
b0 += kw[0];
b1 += kw[1] + t[0];
b2 += kw[2] + t[1];
b3 += kw[3];
/*
* Rounds loop, unrolled to 8 rounds per iteration.
*
* Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
* inlining of the permutations, which cycle every of 2 rounds (avoiding array
* index/lookup).
*
* Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
* inlining constant rotation values (avoiding array index/lookup).
*/
for (int d = 1; d < (ROUNDS_256 / 4); d += 2)
{
final int dm5 = mod5[d];
final int dm3 = mod3[d];
/*
* 4 rounds of mix and permute.
*
* Permute schedule has a 2 round cycle, so permutes are inlined in the mix
* operations in each 4 round block.
*/
b1 = rotlXor(b1, ROTATION_0_0, b0 += b1);
b3 = rotlXor(b3, ROTATION_0_1, b2 += b3);
b3 = rotlXor(b3, ROTATION_1_0, b0 += b3);
b1 = rotlXor(b1, ROTATION_1_1, b2 += b1);
b1 = rotlXor(b1, ROTATION_2_0, b0 += b1);
b3 = rotlXor(b3, ROTATION_2_1, b2 += b3);
b3 = rotlXor(b3, ROTATION_3_0, b0 += b3);
b1 = rotlXor(b1, ROTATION_3_1, b2 += b1);
/*
* Subkey injection for first 4 rounds.
*/
b0 += kw[dm5];
b1 += kw[dm5 + 1] + t[dm3];
b2 += kw[dm5 + 2] + t[dm3 + 1];
b3 += kw[dm5 + 3] + d;
/*
* 4 more rounds of mix/permute
*/
b1 = rotlXor(b1, ROTATION_4_0, b0 += b1);
b3 = rotlXor(b3, ROTATION_4_1, b2 += b3);
b3 = rotlXor(b3, ROTATION_5_0, b0 += b3);
b1 = rotlXor(b1, ROTATION_5_1, b2 += b1);
b1 = rotlXor(b1, ROTATION_6_0, b0 += b1);
b3 = rotlXor(b3, ROTATION_6_1, b2 += b3);
b3 = rotlXor(b3, ROTATION_7_0, b0 += b3);
b1 = rotlXor(b1, ROTATION_7_1, b2 += b1);
/*
* Subkey injection for next 4 rounds.
*/
b0 += kw[dm5 + 1];
b1 += kw[dm5 + 2] + t[dm3 + 1];
b2 += kw[dm5 + 3] + t[dm3 + 2];
b3 += kw[dm5 + 4] + d + 1;
}
/*
* Output cipher state.
*/
out[0] = b0;
out[1] = b1;
out[2] = b2;
out[3] = b3;
}
void decryptBlock(long[] block, long[] state)
{
final long[] kw = this.kw;
final long[] t = this.t;
final int[] mod5 = MOD5;
final int[] mod3 = MOD3;
/* Help the JIT avoid index bounds checks */
if (kw.length != 9)
{
throw new IllegalArgumentException();
}
if (t.length != 5)
{
throw new IllegalArgumentException();
}
long b0 = block[0];
long b1 = block[1];
long b2 = block[2];
long b3 = block[3];
for (int d = (ROUNDS_256 / 4) - 1; d >= 1; d -= 2)
{
final int dm5 = mod5[d];
final int dm3 = mod3[d];
/* Reverse key injection for second 4 rounds */
b0 -= kw[dm5 + 1];
b1 -= kw[dm5 + 2] + t[dm3 + 1];
b2 -= kw[dm5 + 3] + t[dm3 + 2];
b3 -= kw[dm5 + 4] + d + 1;
/* Reverse second 4 mix/permute rounds */
b3 = xorRotr(b3, ROTATION_7_0, b0);
b0 -= b3;
b1 = xorRotr(b1, ROTATION_7_1, b2);
b2 -= b1;
b1 = xorRotr(b1, ROTATION_6_0, b0);
b0 -= b1;
b3 = xorRotr(b3, ROTATION_6_1, b2);
b2 -= b3;
b3 = xorRotr(b3, ROTATION_5_0, b0);
b0 -= b3;
b1 = xorRotr(b1, ROTATION_5_1, b2);
b2 -= b1;
b1 = xorRotr(b1, ROTATION_4_0, b0);
b0 -= b1;
b3 = xorRotr(b3, ROTATION_4_1, b2);
b2 -= b3;
/* Reverse key injection for first 4 rounds */
b0 -= kw[dm5];
b1 -= kw[dm5 + 1] + t[dm3];
b2 -= kw[dm5 + 2] + t[dm3 + 1];
b3 -= kw[dm5 + 3] + d;
/* Reverse first 4 mix/permute rounds */
b3 = xorRotr(b3, ROTATION_3_0, b0);
b0 -= b3;
b1 = xorRotr(b1, ROTATION_3_1, b2);
b2 -= b1;
b1 = xorRotr(b1, ROTATION_2_0, b0);
b0 -= b1;
b3 = xorRotr(b3, ROTATION_2_1, b2);
b2 -= b3;
b3 = xorRotr(b3, ROTATION_1_0, b0);
b0 -= b3;
b1 = xorRotr(b1, ROTATION_1_1, b2);
b2 -= b1;
b1 = xorRotr(b1, ROTATION_0_0, b0);
b0 -= b1;
b3 = xorRotr(b3, ROTATION_0_1, b2);
b2 -= b3;
}
/*
* First subkey uninjection.
*/
b0 -= kw[0];
b1 -= kw[1] + t[0];
b2 -= kw[2] + t[1];
b3 -= kw[3];
/*
* Output cipher state.
*/
state[0] = b0;
state[1] = b1;
state[2] = b2;
state[3] = b3;
}
}
private static final class Threefish512Cipher
extends ThreefishCipher
{
/**
* Mix rotation constants defined in Skein 1.3 specification
*/
private static final int ROTATION_0_0 = 46, ROTATION_0_1 = 36, ROTATION_0_2 = 19, ROTATION_0_3 = 37;
private static final int ROTATION_1_0 = 33, ROTATION_1_1 = 27, ROTATION_1_2 = 14, ROTATION_1_3 = 42;
private static final int ROTATION_2_0 = 17, ROTATION_2_1 = 49, ROTATION_2_2 = 36, ROTATION_2_3 = 39;
private static final int ROTATION_3_0 = 44, ROTATION_3_1 = 9, ROTATION_3_2 = 54, ROTATION_3_3 = 56;
private static final int ROTATION_4_0 = 39, ROTATION_4_1 = 30, ROTATION_4_2 = 34, ROTATION_4_3 = 24;
private static final int ROTATION_5_0 = 13, ROTATION_5_1 = 50, ROTATION_5_2 = 10, ROTATION_5_3 = 17;
private static final int ROTATION_6_0 = 25, ROTATION_6_1 = 29, ROTATION_6_2 = 39, ROTATION_6_3 = 43;
private static final int ROTATION_7_0 = 8, ROTATION_7_1 = 35, ROTATION_7_2 = 56, ROTATION_7_3 = 22;
protected Threefish512Cipher(long[] kw, long[] t)
{
super(kw, t);
}
public void encryptBlock(long[] block, long[] out)
{
final long[] kw = this.kw;
final long[] t = this.t;
final int[] mod9 = MOD9;
final int[] mod3 = MOD3;
/* Help the JIT avoid index bounds checks */
if (kw.length != 17)
{
throw new IllegalArgumentException();
}
if (t.length != 5)
{
throw new IllegalArgumentException();
}
/*
* Read 8 words of plaintext data, not using arrays for cipher state
*/
long b0 = block[0];
long b1 = block[1];
long b2 = block[2];
long b3 = block[3];
long b4 = block[4];
long b5 = block[5];
long b6 = block[6];
long b7 = block[7];
/*
* First subkey injection.
*/
b0 += kw[0];
b1 += kw[1];
b2 += kw[2];
b3 += kw[3];
b4 += kw[4];
b5 += kw[5] + t[0];
b6 += kw[6] + t[1];
b7 += kw[7];
/*
* Rounds loop, unrolled to 8 rounds per iteration.
*
* Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
* inlining of the permutations, which cycle every of 4 rounds (avoiding array
* index/lookup).
*
* Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
* inlining constant rotation values (avoiding array index/lookup).
*/
for (int d = 1; d < (ROUNDS_512 / 4); d += 2)
{
final int dm9 = mod9[d];
final int dm3 = mod3[d];
/*
* 4 rounds of mix and permute.
*
* Permute schedule has a 4 round cycle, so permutes are inlined in the mix
* operations in each 4 round block.
*/
b1 = rotlXor(b1, ROTATION_0_0, b0 += b1);
b3 = rotlXor(b3, ROTATION_0_1, b2 += b3);
b5 = rotlXor(b5, ROTATION_0_2, b4 += b5);
b7 = rotlXor(b7, ROTATION_0_3, b6 += b7);
b1 = rotlXor(b1, ROTATION_1_0, b2 += b1);
b7 = rotlXor(b7, ROTATION_1_1, b4 += b7);
b5 = rotlXor(b5, ROTATION_1_2, b6 += b5);
b3 = rotlXor(b3, ROTATION_1_3, b0 += b3);
b1 = rotlXor(b1, ROTATION_2_0, b4 += b1);
b3 = rotlXor(b3, ROTATION_2_1, b6 += b3);
b5 = rotlXor(b5, ROTATION_2_2, b0 += b5);
b7 = rotlXor(b7, ROTATION_2_3, b2 += b7);
b1 = rotlXor(b1, ROTATION_3_0, b6 += b1);
b7 = rotlXor(b7, ROTATION_3_1, b0 += b7);
b5 = rotlXor(b5, ROTATION_3_2, b2 += b5);
b3 = rotlXor(b3, ROTATION_3_3, b4 += b3);
/*
* Subkey injection for first 4 rounds.
*/
b0 += kw[dm9];
b1 += kw[dm9 + 1];
b2 += kw[dm9 + 2];
b3 += kw[dm9 + 3];
b4 += kw[dm9 + 4];
b5 += kw[dm9 + 5] + t[dm3];
b6 += kw[dm9 + 6] + t[dm3 + 1];
b7 += kw[dm9 + 7] + d;
/*
* 4 more rounds of mix/permute
*/
b1 = rotlXor(b1, ROTATION_4_0, b0 += b1);
b3 = rotlXor(b3, ROTATION_4_1, b2 += b3);
b5 = rotlXor(b5, ROTATION_4_2, b4 += b5);
b7 = rotlXor(b7, ROTATION_4_3, b6 += b7);
b1 = rotlXor(b1, ROTATION_5_0, b2 += b1);
b7 = rotlXor(b7, ROTATION_5_1, b4 += b7);
b5 = rotlXor(b5, ROTATION_5_2, b6 += b5);
b3 = rotlXor(b3, ROTATION_5_3, b0 += b3);
b1 = rotlXor(b1, ROTATION_6_0, b4 += b1);
b3 = rotlXor(b3, ROTATION_6_1, b6 += b3);
b5 = rotlXor(b5, ROTATION_6_2, b0 += b5);
b7 = rotlXor(b7, ROTATION_6_3, b2 += b7);
b1 = rotlXor(b1, ROTATION_7_0, b6 += b1);
b7 = rotlXor(b7, ROTATION_7_1, b0 += b7);
b5 = rotlXor(b5, ROTATION_7_2, b2 += b5);
b3 = rotlXor(b3, ROTATION_7_3, b4 += b3);
/*
* Subkey injection for next 4 rounds.
*/
b0 += kw[dm9 + 1];
b1 += kw[dm9 + 2];
b2 += kw[dm9 + 3];
b3 += kw[dm9 + 4];
b4 += kw[dm9 + 5];
b5 += kw[dm9 + 6] + t[dm3 + 1];
b6 += kw[dm9 + 7] + t[dm3 + 2];
b7 += kw[dm9 + 8] + d + 1;
}
/*
* Output cipher state.
*/
out[0] = b0;
out[1] = b1;
out[2] = b2;
out[3] = b3;
out[4] = b4;
out[5] = b5;
out[6] = b6;
out[7] = b7;
}
public void decryptBlock(long[] block, long[] state)
{
final long[] kw = this.kw;
final long[] t = this.t;
final int[] mod9 = MOD9;
final int[] mod3 = MOD3;
/* Help the JIT avoid index bounds checks */
if (kw.length != 17)
{
throw new IllegalArgumentException();
}
if (t.length != 5)
{
throw new IllegalArgumentException();
}
long b0 = block[0];
long b1 = block[1];
long b2 = block[2];
long b3 = block[3];
long b4 = block[4];
long b5 = block[5];
long b6 = block[6];
long b7 = block[7];
for (int d = (ROUNDS_512 / 4) - 1; d >= 1; d -= 2)
{
final int dm9 = mod9[d];
final int dm3 = mod3[d];
/* Reverse key injection for second 4 rounds */
b0 -= kw[dm9 + 1];
b1 -= kw[dm9 + 2];
b2 -= kw[dm9 + 3];
b3 -= kw[dm9 + 4];
b4 -= kw[dm9 + 5];
b5 -= kw[dm9 + 6] + t[dm3 + 1];
b6 -= kw[dm9 + 7] + t[dm3 + 2];
b7 -= kw[dm9 + 8] + d + 1;
/* Reverse second 4 mix/permute rounds */
b1 = xorRotr(b1, ROTATION_7_0, b6);
b6 -= b1;
b7 = xorRotr(b7, ROTATION_7_1, b0);
b0 -= b7;
b5 = xorRotr(b5, ROTATION_7_2, b2);
b2 -= b5;
b3 = xorRotr(b3, ROTATION_7_3, b4);
b4 -= b3;
b1 = xorRotr(b1, ROTATION_6_0, b4);
b4 -= b1;
b3 = xorRotr(b3, ROTATION_6_1, b6);
b6 -= b3;
b5 = xorRotr(b5, ROTATION_6_2, b0);
b0 -= b5;
b7 = xorRotr(b7, ROTATION_6_3, b2);
b2 -= b7;
b1 = xorRotr(b1, ROTATION_5_0, b2);
b2 -= b1;
b7 = xorRotr(b7, ROTATION_5_1, b4);
b4 -= b7;
b5 = xorRotr(b5, ROTATION_5_2, b6);
b6 -= b5;
b3 = xorRotr(b3, ROTATION_5_3, b0);
b0 -= b3;
b1 = xorRotr(b1, ROTATION_4_0, b0);
b0 -= b1;
b3 = xorRotr(b3, ROTATION_4_1, b2);
b2 -= b3;
b5 = xorRotr(b5, ROTATION_4_2, b4);
b4 -= b5;
b7 = xorRotr(b7, ROTATION_4_3, b6);
b6 -= b7;
/* Reverse key injection for first 4 rounds */
b0 -= kw[dm9];
b1 -= kw[dm9 + 1];
b2 -= kw[dm9 + 2];
b3 -= kw[dm9 + 3];
b4 -= kw[dm9 + 4];
b5 -= kw[dm9 + 5] + t[dm3];
b6 -= kw[dm9 + 6] + t[dm3 + 1];
b7 -= kw[dm9 + 7] + d;
/* Reverse first 4 mix/permute rounds */
b1 = xorRotr(b1, ROTATION_3_0, b6);
b6 -= b1;
b7 = xorRotr(b7, ROTATION_3_1, b0);
b0 -= b7;
b5 = xorRotr(b5, ROTATION_3_2, b2);
b2 -= b5;
b3 = xorRotr(b3, ROTATION_3_3, b4);
b4 -= b3;
b1 = xorRotr(b1, ROTATION_2_0, b4);
b4 -= b1;
b3 = xorRotr(b3, ROTATION_2_1, b6);
b6 -= b3;
b5 = xorRotr(b5, ROTATION_2_2, b0);
b0 -= b5;
b7 = xorRotr(b7, ROTATION_2_3, b2);
b2 -= b7;
b1 = xorRotr(b1, ROTATION_1_0, b2);
b2 -= b1;
b7 = xorRotr(b7, ROTATION_1_1, b4);
b4 -= b7;
b5 = xorRotr(b5, ROTATION_1_2, b6);
b6 -= b5;
b3 = xorRotr(b3, ROTATION_1_3, b0);
b0 -= b3;
b1 = xorRotr(b1, ROTATION_0_0, b0);
b0 -= b1;
b3 = xorRotr(b3, ROTATION_0_1, b2);
b2 -= b3;
b5 = xorRotr(b5, ROTATION_0_2, b4);
b4 -= b5;
b7 = xorRotr(b7, ROTATION_0_3, b6);
b6 -= b7;
}
/*
* First subkey uninjection.
*/
b0 -= kw[0];
b1 -= kw[1];
b2 -= kw[2];
b3 -= kw[3];
b4 -= kw[4];
b5 -= kw[5] + t[0];
b6 -= kw[6] + t[1];
b7 -= kw[7];
/*
* Output cipher state.
*/
state[0] = b0;
state[1] = b1;
state[2] = b2;
state[3] = b3;
state[4] = b4;
state[5] = b5;
state[6] = b6;
state[7] = b7;
}
}
private static final class Threefish1024Cipher
extends ThreefishCipher
{
/**
* Mix rotation constants defined in Skein 1.3 specification
*/
private static final int ROTATION_0_0 = 24, ROTATION_0_1 = 13, ROTATION_0_2 = 8, ROTATION_0_3 = 47;
private static final int ROTATION_0_4 = 8, ROTATION_0_5 = 17, ROTATION_0_6 = 22, ROTATION_0_7 = 37;
private static final int ROTATION_1_0 = 38, ROTATION_1_1 = 19, ROTATION_1_2 = 10, ROTATION_1_3 = 55;
private static final int ROTATION_1_4 = 49, ROTATION_1_5 = 18, ROTATION_1_6 = 23, ROTATION_1_7 = 52;
private static final int ROTATION_2_0 = 33, ROTATION_2_1 = 4, ROTATION_2_2 = 51, ROTATION_2_3 = 13;
private static final int ROTATION_2_4 = 34, ROTATION_2_5 = 41, ROTATION_2_6 = 59, ROTATION_2_7 = 17;
private static final int ROTATION_3_0 = 5, ROTATION_3_1 = 20, ROTATION_3_2 = 48, ROTATION_3_3 = 41;
private static final int ROTATION_3_4 = 47, ROTATION_3_5 = 28, ROTATION_3_6 = 16, ROTATION_3_7 = 25;
private static final int ROTATION_4_0 = 41, ROTATION_4_1 = 9, ROTATION_4_2 = 37, ROTATION_4_3 = 31;
private static final int ROTATION_4_4 = 12, ROTATION_4_5 = 47, ROTATION_4_6 = 44, ROTATION_4_7 = 30;
private static final int ROTATION_5_0 = 16, ROTATION_5_1 = 34, ROTATION_5_2 = 56, ROTATION_5_3 = 51;
private static final int ROTATION_5_4 = 4, ROTATION_5_5 = 53, ROTATION_5_6 = 42, ROTATION_5_7 = 41;
private static final int ROTATION_6_0 = 31, ROTATION_6_1 = 44, ROTATION_6_2 = 47, ROTATION_6_3 = 46;
private static final int ROTATION_6_4 = 19, ROTATION_6_5 = 42, ROTATION_6_6 = 44, ROTATION_6_7 = 25;
private static final int ROTATION_7_0 = 9, ROTATION_7_1 = 48, ROTATION_7_2 = 35, ROTATION_7_3 = 52;
private static final int ROTATION_7_4 = 23, ROTATION_7_5 = 31, ROTATION_7_6 = 37, ROTATION_7_7 = 20;
public Threefish1024Cipher(long[] kw, long[] t)
{
super(kw, t);
}
void encryptBlock(long[] block, long[] out)
{
final long[] kw = this.kw;
final long[] t = this.t;
final int[] mod17 = MOD17;
final int[] mod3 = MOD3;
/* Help the JIT avoid index bounds checks */
if (kw.length != 33)
{
throw new IllegalArgumentException();
}
if (t.length != 5)
{
throw new IllegalArgumentException();
}
/*
* Read 16 words of plaintext data, not using arrays for cipher state
*/
long b0 = block[0];
long b1 = block[1];
long b2 = block[2];
long b3 = block[3];
long b4 = block[4];
long b5 = block[5];
long b6 = block[6];
long b7 = block[7];
long b8 = block[8];
long b9 = block[9];
long b10 = block[10];
long b11 = block[11];
long b12 = block[12];
long b13 = block[13];
long b14 = block[14];
long b15 = block[15];
/*
* First subkey injection.
*/
b0 += kw[0];
b1 += kw[1];
b2 += kw[2];
b3 += kw[3];
b4 += kw[4];
b5 += kw[5];
b6 += kw[6];
b7 += kw[7];
b8 += kw[8];
b9 += kw[9];
b10 += kw[10];
b11 += kw[11];
b12 += kw[12];
b13 += kw[13] + t[0];
b14 += kw[14] + t[1];
b15 += kw[15];
/*
* Rounds loop, unrolled to 8 rounds per iteration.
*
* Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
* inlining of the permutations, which cycle every of 4 rounds (avoiding array
* index/lookup).
*
* Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
* inlining constant rotation values (avoiding array index/lookup).
*/
for (int d = 1; d < (ROUNDS_1024 / 4); d += 2)
{
final int dm17 = mod17[d];
final int dm3 = mod3[d];
/*
* 4 rounds of mix and permute.
*
* Permute schedule has a 4 round cycle, so permutes are inlined in the mix
* operations in each 4 round block.
*/
b1 = rotlXor(b1, ROTATION_0_0, b0 += b1);
b3 = rotlXor(b3, ROTATION_0_1, b2 += b3);
b5 = rotlXor(b5, ROTATION_0_2, b4 += b5);
b7 = rotlXor(b7, ROTATION_0_3, b6 += b7);
b9 = rotlXor(b9, ROTATION_0_4, b8 += b9);
b11 = rotlXor(b11, ROTATION_0_5, b10 += b11);
b13 = rotlXor(b13, ROTATION_0_6, b12 += b13);
b15 = rotlXor(b15, ROTATION_0_7, b14 += b15);
b9 = rotlXor(b9, ROTATION_1_0, b0 += b9);
b13 = rotlXor(b13, ROTATION_1_1, b2 += b13);
b11 = rotlXor(b11, ROTATION_1_2, b6 += b11);
b15 = rotlXor(b15, ROTATION_1_3, b4 += b15);
b7 = rotlXor(b7, ROTATION_1_4, b10 += b7);
b3 = rotlXor(b3, ROTATION_1_5, b12 += b3);
b5 = rotlXor(b5, ROTATION_1_6, b14 += b5);
b1 = rotlXor(b1, ROTATION_1_7, b8 += b1);
b7 = rotlXor(b7, ROTATION_2_0, b0 += b7);
b5 = rotlXor(b5, ROTATION_2_1, b2 += b5);
b3 = rotlXor(b3, ROTATION_2_2, b4 += b3);
b1 = rotlXor(b1, ROTATION_2_3, b6 += b1);
b15 = rotlXor(b15, ROTATION_2_4, b12 += b15);
b13 = rotlXor(b13, ROTATION_2_5, b14 += b13);
b11 = rotlXor(b11, ROTATION_2_6, b8 += b11);
b9 = rotlXor(b9, ROTATION_2_7, b10 += b9);
b15 = rotlXor(b15, ROTATION_3_0, b0 += b15);
b11 = rotlXor(b11, ROTATION_3_1, b2 += b11);
b13 = rotlXor(b13, ROTATION_3_2, b6 += b13);
b9 = rotlXor(b9, ROTATION_3_3, b4 += b9);
b1 = rotlXor(b1, ROTATION_3_4, b14 += b1);
b5 = rotlXor(b5, ROTATION_3_5, b8 += b5);
b3 = rotlXor(b3, ROTATION_3_6, b10 += b3);
b7 = rotlXor(b7, ROTATION_3_7, b12 += b7);
/*
* Subkey injection for first 4 rounds.
*/
b0 += kw[dm17];
b1 += kw[dm17 + 1];
b2 += kw[dm17 + 2];
b3 += kw[dm17 + 3];
b4 += kw[dm17 + 4];
b5 += kw[dm17 + 5];
b6 += kw[dm17 + 6];
b7 += kw[dm17 + 7];
b8 += kw[dm17 + 8];
b9 += kw[dm17 + 9];
b10 += kw[dm17 + 10];
b11 += kw[dm17 + 11];
b12 += kw[dm17 + 12];
b13 += kw[dm17 + 13] + t[dm3];
b14 += kw[dm17 + 14] + t[dm3 + 1];
b15 += kw[dm17 + 15] + d;
/*
* 4 more rounds of mix/permute
*/
b1 = rotlXor(b1, ROTATION_4_0, b0 += b1);
b3 = rotlXor(b3, ROTATION_4_1, b2 += b3);
b5 = rotlXor(b5, ROTATION_4_2, b4 += b5);
b7 = rotlXor(b7, ROTATION_4_3, b6 += b7);
b9 = rotlXor(b9, ROTATION_4_4, b8 += b9);
b11 = rotlXor(b11, ROTATION_4_5, b10 += b11);
b13 = rotlXor(b13, ROTATION_4_6, b12 += b13);
b15 = rotlXor(b15, ROTATION_4_7, b14 += b15);
b9 = rotlXor(b9, ROTATION_5_0, b0 += b9);
b13 = rotlXor(b13, ROTATION_5_1, b2 += b13);
b11 = rotlXor(b11, ROTATION_5_2, b6 += b11);
b15 = rotlXor(b15, ROTATION_5_3, b4 += b15);
b7 = rotlXor(b7, ROTATION_5_4, b10 += b7);
b3 = rotlXor(b3, ROTATION_5_5, b12 += b3);
b5 = rotlXor(b5, ROTATION_5_6, b14 += b5);
b1 = rotlXor(b1, ROTATION_5_7, b8 += b1);
b7 = rotlXor(b7, ROTATION_6_0, b0 += b7);
b5 = rotlXor(b5, ROTATION_6_1, b2 += b5);
b3 = rotlXor(b3, ROTATION_6_2, b4 += b3);
b1 = rotlXor(b1, ROTATION_6_3, b6 += b1);
b15 = rotlXor(b15, ROTATION_6_4, b12 += b15);
b13 = rotlXor(b13, ROTATION_6_5, b14 += b13);
b11 = rotlXor(b11, ROTATION_6_6, b8 += b11);
b9 = rotlXor(b9, ROTATION_6_7, b10 += b9);
b15 = rotlXor(b15, ROTATION_7_0, b0 += b15);
b11 = rotlXor(b11, ROTATION_7_1, b2 += b11);
b13 = rotlXor(b13, ROTATION_7_2, b6 += b13);
b9 = rotlXor(b9, ROTATION_7_3, b4 += b9);
b1 = rotlXor(b1, ROTATION_7_4, b14 += b1);
b5 = rotlXor(b5, ROTATION_7_5, b8 += b5);
b3 = rotlXor(b3, ROTATION_7_6, b10 += b3);
b7 = rotlXor(b7, ROTATION_7_7, b12 += b7);
/*
* Subkey injection for next 4 rounds.
*/
b0 += kw[dm17 + 1];
b1 += kw[dm17 + 2];
b2 += kw[dm17 + 3];
b3 += kw[dm17 + 4];
b4 += kw[dm17 + 5];
b5 += kw[dm17 + 6];
b6 += kw[dm17 + 7];
b7 += kw[dm17 + 8];
b8 += kw[dm17 + 9];
b9 += kw[dm17 + 10];
b10 += kw[dm17 + 11];
b11 += kw[dm17 + 12];
b12 += kw[dm17 + 13];
b13 += kw[dm17 + 14] + t[dm3 + 1];
b14 += kw[dm17 + 15] + t[dm3 + 2];
b15 += kw[dm17 + 16] + d + 1;
}
/*
* Output cipher state.
*/
out[0] = b0;
out[1] = b1;
out[2] = b2;
out[3] = b3;
out[4] = b4;
out[5] = b5;
out[6] = b6;
out[7] = b7;
out[8] = b8;
out[9] = b9;
out[10] = b10;
out[11] = b11;
out[12] = b12;
out[13] = b13;
out[14] = b14;
out[15] = b15;
}
void decryptBlock(long[] block, long[] state)
{
final long[] kw = this.kw;
final long[] t = this.t;
final int[] mod17 = MOD17;
final int[] mod3 = MOD3;
/* Help the JIT avoid index bounds checks */
if (kw.length != 33)
{
throw new IllegalArgumentException();
}
if (t.length != 5)
{
throw new IllegalArgumentException();
}
long b0 = block[0];
long b1 = block[1];
long b2 = block[2];
long b3 = block[3];
long b4 = block[4];
long b5 = block[5];
long b6 = block[6];
long b7 = block[7];
long b8 = block[8];
long b9 = block[9];
long b10 = block[10];
long b11 = block[11];
long b12 = block[12];
long b13 = block[13];
long b14 = block[14];
long b15 = block[15];
for (int d = (ROUNDS_1024 / 4) - 1; d >= 1; d -= 2)
{
final int dm17 = mod17[d];
final int dm3 = mod3[d];
/* Reverse key injection for second 4 rounds */
b0 -= kw[dm17 + 1];
b1 -= kw[dm17 + 2];
b2 -= kw[dm17 + 3];
b3 -= kw[dm17 + 4];
b4 -= kw[dm17 + 5];
b5 -= kw[dm17 + 6];
b6 -= kw[dm17 + 7];
b7 -= kw[dm17 + 8];
b8 -= kw[dm17 + 9];
b9 -= kw[dm17 + 10];
b10 -= kw[dm17 + 11];
b11 -= kw[dm17 + 12];
b12 -= kw[dm17 + 13];
b13 -= kw[dm17 + 14] + t[dm3 + 1];
b14 -= kw[dm17 + 15] + t[dm3 + 2];
b15 -= kw[dm17 + 16] + d + 1;
/* Reverse second 4 mix/permute rounds */
b15 = xorRotr(b15, ROTATION_7_0, b0);
b0 -= b15;
b11 = xorRotr(b11, ROTATION_7_1, b2);
b2 -= b11;
b13 = xorRotr(b13, ROTATION_7_2, b6);
b6 -= b13;
b9 = xorRotr(b9, ROTATION_7_3, b4);
b4 -= b9;
b1 = xorRotr(b1, ROTATION_7_4, b14);
b14 -= b1;
b5 = xorRotr(b5, ROTATION_7_5, b8);
b8 -= b5;
b3 = xorRotr(b3, ROTATION_7_6, b10);
b10 -= b3;
b7 = xorRotr(b7, ROTATION_7_7, b12);
b12 -= b7;
b7 = xorRotr(b7, ROTATION_6_0, b0);
b0 -= b7;
b5 = xorRotr(b5, ROTATION_6_1, b2);
b2 -= b5;
b3 = xorRotr(b3, ROTATION_6_2, b4);
b4 -= b3;
b1 = xorRotr(b1, ROTATION_6_3, b6);
b6 -= b1;
b15 = xorRotr(b15, ROTATION_6_4, b12);
b12 -= b15;
b13 = xorRotr(b13, ROTATION_6_5, b14);
b14 -= b13;
b11 = xorRotr(b11, ROTATION_6_6, b8);
b8 -= b11;
b9 = xorRotr(b9, ROTATION_6_7, b10);
b10 -= b9;
b9 = xorRotr(b9, ROTATION_5_0, b0);
b0 -= b9;
b13 = xorRotr(b13, ROTATION_5_1, b2);
b2 -= b13;
b11 = xorRotr(b11, ROTATION_5_2, b6);
b6 -= b11;
b15 = xorRotr(b15, ROTATION_5_3, b4);
b4 -= b15;
b7 = xorRotr(b7, ROTATION_5_4, b10);
b10 -= b7;
b3 = xorRotr(b3, ROTATION_5_5, b12);
b12 -= b3;
b5 = xorRotr(b5, ROTATION_5_6, b14);
b14 -= b5;
b1 = xorRotr(b1, ROTATION_5_7, b8);
b8 -= b1;
b1 = xorRotr(b1, ROTATION_4_0, b0);
b0 -= b1;
b3 = xorRotr(b3, ROTATION_4_1, b2);
b2 -= b3;
b5 = xorRotr(b5, ROTATION_4_2, b4);
b4 -= b5;
b7 = xorRotr(b7, ROTATION_4_3, b6);
b6 -= b7;
b9 = xorRotr(b9, ROTATION_4_4, b8);
b8 -= b9;
b11 = xorRotr(b11, ROTATION_4_5, b10);
b10 -= b11;
b13 = xorRotr(b13, ROTATION_4_6, b12);
b12 -= b13;
b15 = xorRotr(b15, ROTATION_4_7, b14);
b14 -= b15;
/* Reverse key injection for first 4 rounds */
b0 -= kw[dm17];
b1 -= kw[dm17 + 1];
b2 -= kw[dm17 + 2];
b3 -= kw[dm17 + 3];
b4 -= kw[dm17 + 4];
b5 -= kw[dm17 + 5];
b6 -= kw[dm17 + 6];
b7 -= kw[dm17 + 7];
b8 -= kw[dm17 + 8];
b9 -= kw[dm17 + 9];
b10 -= kw[dm17 + 10];
b11 -= kw[dm17 + 11];
b12 -= kw[dm17 + 12];
b13 -= kw[dm17 + 13] + t[dm3];
b14 -= kw[dm17 + 14] + t[dm3 + 1];
b15 -= kw[dm17 + 15] + d;
/* Reverse first 4 mix/permute rounds */
b15 = xorRotr(b15, ROTATION_3_0, b0);
b0 -= b15;
b11 = xorRotr(b11, ROTATION_3_1, b2);
b2 -= b11;
b13 = xorRotr(b13, ROTATION_3_2, b6);
b6 -= b13;
b9 = xorRotr(b9, ROTATION_3_3, b4);
b4 -= b9;
b1 = xorRotr(b1, ROTATION_3_4, b14);
b14 -= b1;
b5 = xorRotr(b5, ROTATION_3_5, b8);
b8 -= b5;
b3 = xorRotr(b3, ROTATION_3_6, b10);
b10 -= b3;
b7 = xorRotr(b7, ROTATION_3_7, b12);
b12 -= b7;
b7 = xorRotr(b7, ROTATION_2_0, b0);
b0 -= b7;
b5 = xorRotr(b5, ROTATION_2_1, b2);
b2 -= b5;
b3 = xorRotr(b3, ROTATION_2_2, b4);
b4 -= b3;
b1 = xorRotr(b1, ROTATION_2_3, b6);
b6 -= b1;
b15 = xorRotr(b15, ROTATION_2_4, b12);
b12 -= b15;
b13 = xorRotr(b13, ROTATION_2_5, b14);
b14 -= b13;
b11 = xorRotr(b11, ROTATION_2_6, b8);
b8 -= b11;
b9 = xorRotr(b9, ROTATION_2_7, b10);
b10 -= b9;
b9 = xorRotr(b9, ROTATION_1_0, b0);
b0 -= b9;
b13 = xorRotr(b13, ROTATION_1_1, b2);
b2 -= b13;
b11 = xorRotr(b11, ROTATION_1_2, b6);
b6 -= b11;
b15 = xorRotr(b15, ROTATION_1_3, b4);
b4 -= b15;
b7 = xorRotr(b7, ROTATION_1_4, b10);
b10 -= b7;
b3 = xorRotr(b3, ROTATION_1_5, b12);
b12 -= b3;
b5 = xorRotr(b5, ROTATION_1_6, b14);
b14 -= b5;
b1 = xorRotr(b1, ROTATION_1_7, b8);
b8 -= b1;
b1 = xorRotr(b1, ROTATION_0_0, b0);
b0 -= b1;
b3 = xorRotr(b3, ROTATION_0_1, b2);
b2 -= b3;
b5 = xorRotr(b5, ROTATION_0_2, b4);
b4 -= b5;
b7 = xorRotr(b7, ROTATION_0_3, b6);
b6 -= b7;
b9 = xorRotr(b9, ROTATION_0_4, b8);
b8 -= b9;
b11 = xorRotr(b11, ROTATION_0_5, b10);
b10 -= b11;
b13 = xorRotr(b13, ROTATION_0_6, b12);
b12 -= b13;
b15 = xorRotr(b15, ROTATION_0_7, b14);
b14 -= b15;
}
/*
* First subkey uninjection.
*/
b0 -= kw[0];
b1 -= kw[1];
b2 -= kw[2];
b3 -= kw[3];
b4 -= kw[4];
b5 -= kw[5];
b6 -= kw[6];
b7 -= kw[7];
b8 -= kw[8];
b9 -= kw[9];
b10 -= kw[10];
b11 -= kw[11];
b12 -= kw[12];
b13 -= kw[13] + t[0];
b14 -= kw[14] + t[1];
b15 -= kw[15];
/*
* Output cipher state.
*/
state[0] = b0;
state[1] = b1;
state[2] = b2;
state[3] = b3;
state[4] = b4;
state[5] = b5;
state[6] = b6;
state[7] = b7;
state[8] = b8;
state[9] = b9;
state[10] = b10;
state[11] = b11;
state[12] = b12;
state[13] = b13;
state[14] = b14;
state[15] = b15;
}
}
}