org.bouncycastle.math.ec.custom.sec.SecT113R1Curve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk15on Show documentation
Show all versions of bcprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 and up.
The newest version!
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.ec.AbstractECLookupTable;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECCurve.AbstractF2m;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECLookupTable;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.raw.Nat128;
import org.bouncycastle.util.encoders.Hex;
public class SecT113R1Curve extends AbstractF2m
{
private static final int SECT113R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
private static final ECFieldElement[] SECT113R1_AFFINE_ZS = new ECFieldElement[] { new SecT113FieldElement(ECConstants.ONE) };
protected SecT113R1Point infinity;
public SecT113R1Curve()
{
super(113, 9, 0, 0);
this.infinity = new SecT113R1Point(this, null, null);
this.a = fromBigInteger(new BigInteger(1, Hex.decodeStrict("003088250CA6E7C7FE649CE85820F7")));
this.b = fromBigInteger(new BigInteger(1, Hex.decodeStrict("00E8BEE4D3E2260744188BE0E9C723")));
this.order = new BigInteger(1, Hex.decodeStrict("0100000000000000D9CCEC8A39E56F"));
this.cofactor = BigInteger.valueOf(2);
this.coord = SECT113R1_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new SecT113R1Curve();
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_LAMBDA_PROJECTIVE:
return true;
default:
return false;
}
}
public int getFieldSize()
{
return 113;
}
public ECFieldElement fromBigInteger(BigInteger x)
{
return new SecT113FieldElement(x);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y)
{
return new SecT113R1Point(this, x, y);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
return new SecT113R1Point(this, x, y, zs);
}
public ECPoint getInfinity()
{
return infinity;
}
public boolean isKoblitz()
{
return false;
}
public int getM()
{
return 113;
}
public boolean isTrinomial()
{
return true;
}
public int getK1()
{
return 9;
}
public int getK2()
{
return 0;
}
public int getK3()
{
return 0;
}
public ECLookupTable createCacheSafeLookupTable(ECPoint[] points, int off, final int len)
{
final int FE_LONGS = 2;
final long[] table = new long[len * FE_LONGS * 2];
{
int pos = 0;
for (int i = 0; i < len; ++i)
{
ECPoint p = points[off + i];
Nat128.copy64(((SecT113FieldElement)p.getRawXCoord()).x, 0, table, pos); pos += FE_LONGS;
Nat128.copy64(((SecT113FieldElement)p.getRawYCoord()).x, 0, table, pos); pos += FE_LONGS;
}
}
return new AbstractECLookupTable()
{
public int getSize()
{
return len;
}
public ECPoint lookup(int index)
{
long[] x = Nat128.create64(), y = Nat128.create64();
int pos = 0;
for (int i = 0; i < len; ++i)
{
long MASK = ((i ^ index) - 1) >> 31;
for (int j = 0; j < FE_LONGS; ++j)
{
x[j] ^= table[pos + j] & MASK;
y[j] ^= table[pos + FE_LONGS + j] & MASK;
}
pos += (FE_LONGS * 2);
}
return createPoint(x, y);
}
public ECPoint lookupVar(int index)
{
long[] x = Nat128.create64(), y = Nat128.create64();
int pos = index * FE_LONGS * 2;
for (int j = 0; j < FE_LONGS; ++j)
{
x[j] = table[pos + j];
y[j] = table[pos + FE_LONGS + j];
}
return createPoint(x, y);
}
private ECPoint createPoint(long[] x, long[] y)
{
return createRawPoint(new SecT113FieldElement(x), new SecT113FieldElement(y), SECT113R1_AFFINE_ZS);
}
};
}
}