All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.jcajce.provider.rainbow.BCRainbowPrivateKey Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 and up.

The newest version!
package org.bouncycastle.pqc.jcajce.provider.rainbow;

import java.io.IOException;
import java.security.PrivateKey;
import java.util.Arrays;

import org.bouncycastle.asn1.DERNull;
import org.bouncycastle.asn1.pkcs.PrivateKeyInfo;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
import org.bouncycastle.pqc.asn1.PQCObjectIdentifiers;
import org.bouncycastle.pqc.asn1.RainbowPrivateKey;
import org.bouncycastle.pqc.crypto.rainbow.Layer;
import org.bouncycastle.pqc.crypto.rainbow.RainbowPrivateKeyParameters;
import org.bouncycastle.pqc.crypto.rainbow.util.RainbowUtil;
import org.bouncycastle.pqc.jcajce.spec.RainbowPrivateKeySpec;

/**
 * The Private key in Rainbow consists of the linear affine maps L1, L2 and the
 * map F, consisting of quadratic polynomials. In this implementation, we
 * denote: L1 = A1*x + b1 L2 = A2*x + b2
 * 

* The coefficients of the polynomials in F are stored in 3-dimensional arrays * per layer. The indices of these arrays denote the polynomial, and the * variables. *

* More detailed information about the private key is to be found in the paper * of Jintai Ding, Dieter Schmidt: Rainbow, a New Multivariable Polynomial * Signature Scheme. ACNS 2005: 164-175 (https://dx.doi.org/10.1007/11496137_12) *

*/ public class BCRainbowPrivateKey implements PrivateKey { private static final long serialVersionUID = 1L; // the inverse of L1 private short[][] A1inv; // translation vector element of L1 private short[] b1; // the inverse of L2 private short[][] A2inv; // translation vector of L2 private short[] b2; /* * components of F */ private Layer[] layers; // set of vinegar vars per layer. private int[] vi; /** * Constructor. * * @param A1inv * @param b1 * @param A2inv * @param b2 * @param layers */ public BCRainbowPrivateKey(short[][] A1inv, short[] b1, short[][] A2inv, short[] b2, int[] vi, Layer[] layers) { this.A1inv = A1inv; this.b1 = b1; this.A2inv = A2inv; this.b2 = b2; this.vi = vi; this.layers = layers; } /** * Constructor (used by the {@link RainbowKeyFactorySpi}). * * @param keySpec a {@link RainbowPrivateKeySpec} */ public BCRainbowPrivateKey(RainbowPrivateKeySpec keySpec) { this(keySpec.getInvA1(), keySpec.getB1(), keySpec.getInvA2(), keySpec .getB2(), keySpec.getVi(), keySpec.getLayers()); } public BCRainbowPrivateKey( RainbowPrivateKeyParameters params) { this(params.getInvA1(), params.getB1(), params.getInvA2(), params.getB2(), params.getVi(), params.getLayers()); } /** * Getter for the inverse matrix of A1. * * @return the A1inv inverse */ public short[][] getInvA1() { return this.A1inv; } /** * Getter for the translation part of the private quadratic map L1. * * @return b1 the translation part of L1 */ public short[] getB1() { return this.b1; } /** * Getter for the translation part of the private quadratic map L2. * * @return b2 the translation part of L2 */ public short[] getB2() { return this.b2; } /** * Getter for the inverse matrix of A2 * * @return the A2inv */ public short[][] getInvA2() { return this.A2inv; } /** * Returns the layers contained in the private key * * @return layers */ public Layer[] getLayers() { return this.layers; } /** * Returns the array of vi-s * * @return the vi */ public int[] getVi() { return vi; } /** * Compare this Rainbow private key with another object. * * @param other the other object * @return the result of the comparison */ public boolean equals(Object other) { if (other == null || !(other instanceof BCRainbowPrivateKey)) { return false; } BCRainbowPrivateKey otherKey = (BCRainbowPrivateKey)other; boolean eq = true; // compare using shortcut rule ( && instead of &) eq = eq && RainbowUtil.equals(A1inv, otherKey.getInvA1()); eq = eq && RainbowUtil.equals(A2inv, otherKey.getInvA2()); eq = eq && RainbowUtil.equals(b1, otherKey.getB1()); eq = eq && RainbowUtil.equals(b2, otherKey.getB2()); eq = eq && Arrays.equals(vi, otherKey.getVi()); if (layers.length != otherKey.getLayers().length) { return false; } for (int i = layers.length - 1; i >= 0; i--) { eq &= layers[i].equals(otherKey.getLayers()[i]); } return eq; } public int hashCode() { int hash = layers.length; hash = hash * 37 + org.bouncycastle.util.Arrays.hashCode(A1inv); hash = hash * 37 + org.bouncycastle.util.Arrays.hashCode(b1); hash = hash * 37 + org.bouncycastle.util.Arrays.hashCode(A2inv); hash = hash * 37 + org.bouncycastle.util.Arrays.hashCode(b2); hash = hash * 37 + org.bouncycastle.util.Arrays.hashCode(vi); for (int i = layers.length - 1; i >= 0; i--) { hash = hash * 37 + layers[i].hashCode(); } return hash; } /** * @return name of the algorithm - "Rainbow" */ public final String getAlgorithm() { return "Rainbow"; } public byte[] getEncoded() { RainbowPrivateKey privateKey = new RainbowPrivateKey(A1inv, b1, A2inv, b2, vi, layers); PrivateKeyInfo pki; try { AlgorithmIdentifier algorithmIdentifier = new AlgorithmIdentifier(PQCObjectIdentifiers.rainbow, DERNull.INSTANCE); pki = new PrivateKeyInfo(algorithmIdentifier, privateKey); } catch (IOException e) { return null; } try { byte[] encoded = pki.getEncoded(); return encoded; } catch (IOException e) { return null; } } public String getFormat() { return "PKCS#8"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy