All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.crypto.saber.Poly Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.pqc.crypto.saber;

import org.bouncycastle.crypto.Xof;
import org.bouncycastle.crypto.digests.SHAKEDigest;

class Poly
{
    private static final int KARATSUBA_N = 64;

    private static int SCHB_N = 16;

    private final int N_RES;
    private final int N_SB;
    private final int N_SB_RES;
    private final int SABER_N;
    private final int SABER_L;

    private final SABEREngine engine;
    private final Utils utils;


    public Poly(SABEREngine engine)
    {
        this.engine = engine;
        this.SABER_L = engine.getSABER_L();
        this.SABER_N = engine.getSABER_N();
        this.N_RES = (SABER_N << 1);
        this.N_SB = (SABER_N >> 2);
        this.N_SB_RES = (2 * N_SB - 1);
        this.utils = engine.getUtils();
    }

    public void GenMatrix(short[][][] A, byte[] seed)
    {
        byte[] buf = new byte[SABER_L * engine.getSABER_POLYVECBYTES()];
        int i;

        Xof digest = new SHAKEDigest(128);
        digest.update(seed, 0, engine.getSABER_SEEDBYTES());
        digest.doFinal(buf, 0, buf.length);

        for (i = 0; i < SABER_L; i++)
        {
            utils.BS2POLVECq(buf, i * engine.getSABER_POLYVECBYTES(), A[i]);
        }
    }

    public void GenSecret(short[][] s, byte[] seed)
    {
        byte[] buf = new byte[SABER_L * engine.getSABER_POLYCOINBYTES()];
        int i;
        Xof digest = new SHAKEDigest(128);
        digest.update(seed, 0, engine.getSABER_NOISE_SEEDBYTES());
        digest.doFinal(buf, 0, buf.length);

        for (i = 0; i < SABER_L; i++)
        {
            cbd(s[i], buf, i * engine.getSABER_POLYCOINBYTES());
        }

    }

    private long load_littleendian(byte[] x, int offset, int bytes)
    {
        int i;
        long r = (x[offset + 0] & 0xff);
        for (i = 1; i < bytes; i++)
        {
            r |= ((long) (x[offset + i] & 0xff)) << (8 * i);
        }
        return r;
    }

    private void cbd(short[] s, byte[] buf, int offset)
    {
        int[] a = new int[4], b = new int[4];
        int i, j;
        if (engine.getSABER_MU() == 6)
        {
            int t, d;
            for (i = 0; i < SABER_N / 4; i++)
            {
                t = (int) load_littleendian(buf, offset + 3 * i, 3);
                d = 0;
                for (j = 0; j < 3; j++)
                    d += (t >> j) & 0x249249;

                a[0] = d & 0x7;
                b[0] = (d >>> 3) & 0x7;
                a[1] = (d >>> 6) & 0x7;
                b[1] = (d >>> 9) & 0x7;
                a[2] = (d >>> 12) & 0x7;
                b[2] = (d >>> 15) & 0x7;
                a[3] = (d >>> 18) & 0x7;
                b[3] = (d >>> 21);

                s[4 * i + 0] = (short) (a[0] - b[0]);
                s[4 * i + 1] = (short) (a[1] - b[1]);
                s[4 * i + 2] = (short) (a[2] - b[2]);
                s[4 * i + 3] = (short) (a[3] - b[3]);
            }
        }
        else if (engine.getSABER_MU() == 8)
        {
            int t, d;
            for (i = 0; i < SABER_N / 4; i++)
            {

                t = (int) load_littleendian(buf, offset + 4 * i, 4);
                d = 0;
                for (j = 0; j < 4; j++)
                    d += (t >>> j) & 0x11111111;

                a[0] = d & 0xf;
                b[0] = (d >>> 4) & 0xf;
                a[1] = (d >>> 8) & 0xf;
                b[1] = (d >>> 12) & 0xf;
                a[2] = (d >>> 16) & 0xf;
                b[2] = (d >>> 20) & 0xf;
                a[3] = (d >>> 24) & 0xf;
                b[3] = (d >>> 28);

                s[4 * i + 0] = (short) (a[0] - b[0]);
                s[4 * i + 1] = (short) (a[1] - b[1]);
                s[4 * i + 2] = (short) (a[2] - b[2]);
                s[4 * i + 3] = (short) (a[3] - b[3]);
            }
        }
        else if (engine.getSABER_MU() == 10)
        {
            long t, d;
            for (i = 0; i < SABER_N / 4; i++)
            {
                t = load_littleendian(buf, offset + 5 * i, 5);
                d = 0;
                for (j = 0; j < 5; j++)
                    d += (t >>> j) & 0x0842108421L;

                a[0] = (int) (d & 0x1f);
                b[0] = (int) ((d >>> 5) & 0x1f);
                a[1] = (int) ((d >>> 10) & 0x1f);
                b[1] = (int) ((d >>> 15) & 0x1f);
                a[2] = (int) ((d >>> 20) & 0x1f);
                b[2] = (int) ((d >>> 25) & 0x1f);
                a[3] = (int) ((d >>> 30) & 0x1f);
                b[3] = (int) (d >>> 35);

                s[4 * i + 0] = (short) (a[0] - b[0]);
                s[4 * i + 1] = (short) (a[1] - b[1]);
                s[4 * i + 2] = (short) (a[2] - b[2]);
                s[4 * i + 3] = (short) (a[3] - b[3]);
            }
        }
    }

    private short OVERFLOWING_MUL(int x, int y)
    {
        return (short) (x * y);
    }

    private void karatsuba_simple(int[] a_1, int[] b_1, int[] result_final)
    {
        int[] d01 = new int[KARATSUBA_N / 2 - 1];
        int[] d0123 = new int[KARATSUBA_N / 2 - 1];
        int[] d23 = new int[KARATSUBA_N / 2 - 1];
        int[] result_d01 = new int[KARATSUBA_N - 1];

        int i, j;
        int acc1, acc2, acc3, acc4, acc5, acc6, acc7, acc8, acc9, acc10;

        for (i = 0; i < KARATSUBA_N / 4; i++)
        {
            acc1 = a_1[i]; //a0
            acc2 = a_1[i + KARATSUBA_N / 4]; //a1
            acc3 = a_1[i + 2 * KARATSUBA_N / 4]; //a2
            acc4 = a_1[i + 3 * KARATSUBA_N / 4]; //a3
            for (j = 0; j < KARATSUBA_N / 4; j++)
            {

                acc5 = b_1[j]; //b0
                acc6 = b_1[j + KARATSUBA_N / 4]; //b1

                result_final[i + j + 0 * KARATSUBA_N / 4] = (result_final[i + j + 0 * KARATSUBA_N / 4] + OVERFLOWING_MUL(acc1, acc5));
                result_final[i + j + 2 * KARATSUBA_N / 4] = (result_final[i + j + 2 * KARATSUBA_N / 4] + OVERFLOWING_MUL(acc2, acc6));

                acc7 = (acc5 + acc6); //b01
                acc8 = (acc1 + acc2); //a01
                d01[i + j] = (int) (d01[i + j] + (acc7 * (long) acc8));
                //--------------------------------------------------------

                acc7 = b_1[j + 2 * KARATSUBA_N / 4]; //b2
                acc8 = b_1[j + 3 * KARATSUBA_N / 4]; //b3
                result_final[i + j + 4 * KARATSUBA_N / 4] =
                        (result_final[i + j + 4 * KARATSUBA_N / 4] +
                                OVERFLOWING_MUL(acc7, acc3));

                result_final[i + j + 6 * KARATSUBA_N / 4] =
                        (result_final[i + j + 6 * KARATSUBA_N / 4] +
                                OVERFLOWING_MUL(acc8, acc4));

                acc9 = (acc3 + acc4);
                acc10 = (acc7 + acc8);
                d23[i + j] = (d23[i + j] + OVERFLOWING_MUL(acc9, acc10));
                //--------------------------------------------------------

                acc5 = (acc5 + acc7); //b02
                acc7 = (acc1 + acc3); //a02
                result_d01[i + j + 0 * KARATSUBA_N / 4] =
                        (result_d01[i + j + 0 * KARATSUBA_N / 4] +
                                OVERFLOWING_MUL(acc5, acc7));

                acc6 = (acc6 + acc8); //b13
                acc8 = (acc2 + acc4);
                result_d01[i + j + 2 * KARATSUBA_N / 4] =
                        (result_d01[i + j + 2 * KARATSUBA_N / 4] +
                                OVERFLOWING_MUL(acc6, acc8));

                acc5 = (acc5 + acc6);
                acc7 = (acc7 + acc8);
                d0123[i + j] = (d0123[i + j] + OVERFLOWING_MUL(acc5, acc7));
            }
        }

        // 2nd last stage

        for (i = 0; i < KARATSUBA_N / 2 - 1; i++)
        {
            d0123[i] = (d0123[i] - result_d01[i + 0 * KARATSUBA_N / 4] - result_d01[i + 2 * KARATSUBA_N / 4]);
            d01[i] = (d01[i] - result_final[i + 0 * KARATSUBA_N / 4] - result_final[i + 2 * KARATSUBA_N / 4]);
            d23[i] = (d23[i] - result_final[i + 4 * KARATSUBA_N / 4] - result_final[i + 6 * KARATSUBA_N / 4]);
        }

        for (i = 0; i < KARATSUBA_N / 2 - 1; i++)
        {
            result_d01[i + 1 * KARATSUBA_N / 4] = (result_d01[i + 1 * KARATSUBA_N / 4] + d0123[i]);
            result_final[i + 1 * KARATSUBA_N / 4] = (result_final[i + 1 * KARATSUBA_N / 4] + d01[i]);
            result_final[i + 5 * KARATSUBA_N / 4] = (result_final[i + 5 * KARATSUBA_N / 4] + d23[i]);
        }

        // Last stage
        for (i = 0; i < KARATSUBA_N - 1; i++)
        {
            result_d01[i] = (result_d01[i] - result_final[i] - result_final[i + KARATSUBA_N]);
        }

        for (i = 0; i < KARATSUBA_N - 1; i++)
        {
            result_final[i + 1 * KARATSUBA_N / 2] = (result_final[i + 1 * KARATSUBA_N / 2] + result_d01[i]);
        }

    }


    private void toom_cook_4way(short[] a1, short[] b1, short[] result)
    {
        int inv3 = 43691, inv9 = 36409, inv15 = 61167;

        int[] aw1 = new int[N_SB],
                aw2 = new int[N_SB],
                aw3 = new int[N_SB],
                aw4 = new int[N_SB],
                aw5 = new int[N_SB],
                aw6 = new int[N_SB],
                aw7 = new int[N_SB];

        int[] bw1 = new int[N_SB],
                bw2 = new int[N_SB],
                bw3 = new int[N_SB],
                bw4 = new int[N_SB],
                bw5 = new int[N_SB],
                bw6 = new int[N_SB],
                bw7 = new int[N_SB];

        int[] w1 = new int[N_SB_RES],
                w2 = new int[N_SB_RES],
                w3 = new int[N_SB_RES],
                w4 = new int[N_SB_RES],
                w5 = new int[N_SB_RES],
                w6 = new int[N_SB_RES],
                w7 = new int[N_SB_RES];

        int r0, r1, r2, r3, r4, r5, r6, r7;
        short[] C;
        C = result;

        int i, j;

        // EVALUATION
        for (j = 0; j < N_SB; ++j)
        {
            r0 = a1[j];
            r1 = a1[j + N_SB];
            r2 = a1[j + N_SB * 2];
            r3 = a1[j + N_SB * 3];
            r4 = (short) (r0 + r2);
            r5 = (short) (r1 + r3);
            r6 = (short) (r4 + r5);
            r7 = (short) (r4 - r5);
            aw3[j] = r6;
            aw4[j] = r7;
            r4 = (short) (((r0 << 2) + r2) << 1);
            r5 = (short) ((r1 << 2) + r3);
            r6 = (short) (r4 + r5);
            r7 = (short) (r4 - r5);
            aw5[j] = r6;
            aw6[j] = r7;
            r4 = (short) ((r3 << 3) + (r2 << 2) + (r1 << 1) + r0);
            aw2[j] = r4;
            aw7[j] = r0;
            aw1[j] = r3;
        }
        for (j = 0; j < N_SB; ++j)
        {
            r0 = b1[j];
            r1 = b1[j + N_SB];
            r2 = b1[j + N_SB * 2];
            r3 = b1[j + N_SB * 3];
            r4 = r0 + r2;
            r5 = r1 + r3;
            r6 = r4 + r5;
            r7 = r4 - r5;
            bw3[j] = r6;
            bw4[j] = r7;
            r4 = ((r0 << 2) + r2) << 1;
            r5 = (r1 << 2) + r3;
            r6 = r4 + r5;
            r7 = r4 - r5;
            bw5[j] = r6;
            bw6[j] = r7;
            r4 = ((r3 << 3) + (r2 << 2) + (r1 << 1) + r0);
            bw2[j] = r4;
            bw7[j] = r0;
            bw1[j] = r3;
        }

        // MULTIPLICATION

        karatsuba_simple(aw1, bw1, w1);
        karatsuba_simple(aw2, bw2, w2);
        karatsuba_simple(aw3, bw3, w3);
        karatsuba_simple(aw4, bw4, w4);
        karatsuba_simple(aw5, bw5, w5);
        karatsuba_simple(aw6, bw6, w6);
        karatsuba_simple(aw7, bw7, w7);

        // INTERPOLATION
        for (i = 0; i < N_SB_RES; ++i)
        {
            r0 = w1[i];
            r1 = w2[i];
            r2 = w3[i];
            r3 = w4[i];
            r4 = w5[i];
            r5 = w6[i];
            r6 = w7[i];


            r1 = r1 + r4;
            r5 = (r5 - r4);
            r3 = ((r3 & 0xffff) - (r2 & 0xffff)) >>> 1;
            r4 = (r4 - r0);
            r4 = (r4 - (r6 << 6));
            r4 = ((r4 << 1) + r5);
            r2 = (r2 + r3);
            r1 = (r1 - (r2 << 6) - r2);
            r2 = (r2 - r6);
            r2 = (r2 - r0);
            r1 = (r1 + 45 * r2);
            r4 = (((((r4 & 0xffff) - (r2 << 3)) * inv3)) >> 3);
            r5 = (r5 + r1);
            r1 = ((r1 & 0xffff) + ((r3 & 0xffff) << 4)) * inv9 >> 1;
            r3 = -(r3 + r1);
            r5 = ((30 * (r1 & 0xffff) - (r5 & 0xffff)) * inv15) >> 2;
            r2 = (r2 - r4);
            r1 = (r1 - r5);

            C[i] += (r6 & 0xffff);
            C[i + 64] += (r5 & 0xffff);
            C[i + 128] += (r4 & 0xffff);
            C[i + 192] += (r3 & 0xffff);
            C[i + 256] += (r2 & 0xffff);
            C[i + 320] += (r1 & 0xffff);
            C[i + 384] += (r0 & 0xffff);
        }
    }

    private void poly_mul_acc(short[] a, short[] b, short[] res)
    {
        int i;

        short[] c = new short[2 * SABER_N];

        toom_cook_4way(a, b, c);

        /* reduction */
        for (i = SABER_N; i < 2 * SABER_N; i++)
        {
            res[i - SABER_N] += (c[i - SABER_N] - c[i]);
        }
    }

    public void MatrixVectorMul(short[][][] A, short[][] s, short[][] res, int transpose)
    {
        int i, j;
        for (i = 0; i < SABER_L; i++)
        {
            for (j = 0; j < SABER_L; j++)
            {
                if (transpose == 1)
                {
                    poly_mul_acc(A[j][i], s[j], res[i]);
                }
                else
                {
                    poly_mul_acc(A[i][j], s[j], res[i]);
                }
            }
        }
    }

    public void InnerProd(short[][] b, short[][] s, short[] res)
    {
        int j;
        for (j = 0; j < SABER_L; j++)
        {
            poly_mul_acc(b[j], s[j], res);
        }
    }


}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy