All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.rfc8032.Ed25519 Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.80
Show newest version
package org.bouncycastle.math.ec.rfc8032;

import java.security.SecureRandom;

import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.digests.SHA512Digest;
import org.bouncycastle.math.ec.rfc7748.X25519;
import org.bouncycastle.math.ec.rfc7748.X25519Field;
import org.bouncycastle.math.raw.Interleave;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat256;
import org.bouncycastle.util.Arrays;

/**
 * A low-level implementation of the Ed25519, Ed25519ctx, and Ed25519ph instantiations of the Edwards-Curve
 * Digital Signature Algorithm specified in RFC 8032.
 * 

* The implementation strategy is mostly drawn from Mike Hamburg, "Fast and * compact elliptic-curve cryptography", notably the "signed multi-comb" algorithm (for scalar * multiplication by a fixed point), the "half Niels coordinates" (for precomputed points), and the * "extensible coordinates" (for accumulators). Standard * extended coordinates are used * during precomputations, needing only a single extra point addition formula. */ public abstract class Ed25519 { // -x^2 + y^2 == 1 + 0x52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3 * x^2 * y^2 public static final class Algorithm { public static final int Ed25519 = 0; public static final int Ed25519ctx = 1; public static final int Ed25519ph = 2; } private static class F extends X25519Field {}; private static final long M08L = 0x000000FFL; private static final long M28L = 0x0FFFFFFFL; private static final long M32L = 0xFFFFFFFFL; private static final int COORD_INTS = 8; private static final int POINT_BYTES = COORD_INTS * 4; private static final int SCALAR_INTS = 8; private static final int SCALAR_BYTES = SCALAR_INTS * 4; public static final int PREHASH_SIZE = 64; public static final int PUBLIC_KEY_SIZE = POINT_BYTES; public static final int SECRET_KEY_SIZE = 32; public static final int SIGNATURE_SIZE = POINT_BYTES + SCALAR_BYTES; // "SigEd25519 no Ed25519 collisions" private static final byte[] DOM2_PREFIX = new byte[]{ 0x53, 0x69, 0x67, 0x45, 0x64, 0x32, 0x35, 0x35, 0x31, 0x39, 0x20, 0x6e, 0x6f, 0x20, 0x45, 0x64, 0x32, 0x35, 0x35, 0x31, 0x39, 0x20, 0x63, 0x6f, 0x6c, 0x6c, 0x69, 0x73, 0x69, 0x6f, 0x6e, 0x73 }; private static final int[] P = new int[]{ 0xFFFFFFED, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF }; private static final int[] L = new int[]{ 0x5CF5D3ED, 0x5812631A, 0xA2F79CD6, 0x14DEF9DE, 0x00000000, 0x00000000, 0x00000000, 0x10000000 }; private static final int L0 = -0x030A2C13; // L0:26/-- private static final int L1 = 0x012631A6; // L1:24/22 private static final int L2 = 0x079CD658; // L2:27/-- private static final int L3 = -0x006215D1; // L3:23/-- private static final int L4 = 0x000014DF; // L4:12/11 private static final int[] B_x = new int[]{ 0x0325D51A, 0x018B5823, 0x007B2C95, 0x0304A92D, 0x00D2598E, 0x01D6DC5C, 0x01388C7F, 0x013FEC0A, 0x029E6B72, 0x0042D26D }; private static final int[] B_y = new int[]{ 0x02666658, 0x01999999, 0x00666666, 0x03333333, 0x00CCCCCC, 0x02666666, 0x01999999, 0x00666666, 0x03333333, 0x00CCCCCC, }; // Note that d == -121665/121666 private static final int[] C_d = new int[]{ 0x035978A3, 0x02D37284, 0x018AB75E, 0x026A0A0E, 0x0000E014, 0x0379E898, 0x01D01E5D, 0x01E738CC, 0x03715B7F, 0x00A406D9 }; private static final int[] C_d2 = new int[]{ 0x02B2F159, 0x01A6E509, 0x01156EBD, 0x00D4141D, 0x0001C029, 0x02F3D130, 0x03A03CBB, 0x01CE7198, 0x02E2B6FF, 0x00480DB3 }; private static final int[] C_d4 = new int[]{ 0x0165E2B2, 0x034DCA13, 0x002ADD7A, 0x01A8283B, 0x00038052, 0x01E7A260, 0x03407977, 0x019CE331, 0x01C56DFF, 0x00901B67 }; private static final int WNAF_WIDTH = 5; private static final int WNAF_WIDTH_BASE = 7; // scalarMultBase is hard-coded for these values of blocks, teeth, spacing so they can't be freely changed private static final int PRECOMP_BLOCKS = 8; private static final int PRECOMP_TEETH = 4; private static final int PRECOMP_SPACING = 8; // private static final int PRECOMP_RANGE = PRECOMP_BLOCKS * PRECOMP_TEETH * PRECOMP_SPACING; // range == 256 private static final int PRECOMP_POINTS = 1 << (PRECOMP_TEETH - 1); private static final int PRECOMP_MASK = PRECOMP_POINTS - 1; private static final Object PRECOMP_LOCK = new Object(); private static PointPrecomp[] PRECOMP_BASE_WNAF = null; private static int[] PRECOMP_BASE_COMB = null; private static class PointAccum { int[] x = F.create(); int[] y = F.create(); int[] z = F.create(); int[] u = F.create(); int[] v = F.create(); } private static class PointAffine { int[] x = F.create(); int[] y = F.create(); } private static class PointExtended { int[] x = F.create(); int[] y = F.create(); int[] z = F.create(); int[] t = F.create(); } private static class PointPrecomp { int[] ymx_h = F.create(); // (y - x)/2 int[] ypx_h = F.create(); // (y + x)/2 int[] xyd = F.create(); // x.y.d } private static class PointPrecompZ { int[] ymx_h = F.create(); // (y - x)/2 int[] ypx_h = F.create(); // (y + x)/2 int[] xyd = F.create(); // x.y.d int[] z = F.create(); } // Temp space to avoid allocations in point formulae. private static class PointTemp { int[] r0 = F.create(); int[] r1 = F.create();; } private static byte[] calculateS(byte[] r, byte[] k, byte[] s) { int[] t = new int[SCALAR_INTS * 2]; decodeScalar(r, 0, t); int[] u = new int[SCALAR_INTS]; decodeScalar(k, 0, u); int[] v = new int[SCALAR_INTS]; decodeScalar(s, 0, v); Nat256.mulAddTo(u, v, t); byte[] result = new byte[SCALAR_BYTES * 2]; for (int i = 0; i < t.length; ++i) { encode32(t[i], result, i * 4); } return reduceScalar(result); } private static boolean checkContextVar(byte[] ctx , byte phflag) { return ctx == null && phflag == 0x00 || ctx != null && ctx.length < 256; } private static int checkPoint(int[] x, int[] y) { int[] t = F.create(); int[] u = F.create(); int[] v = F.create(); F.sqr(x, u); F.sqr(y, v); F.mul(u, v, t); F.sub(v, u, v); F.mul(t, C_d, t); F.addOne(t); F.sub(t, v, t); F.normalize(t); return F.isZero(t); } private static int checkPoint(int[] x, int[] y, int[] z) { int[] t = F.create(); int[] u = F.create(); int[] v = F.create(); int[] w = F.create(); F.sqr(x, u); F.sqr(y, v); F.sqr(z, w); F.mul(u, v, t); F.sub(v, u, v); F.mul(v, w, v); F.sqr(w, w); F.mul(t, C_d, t); F.add(t, w, t); F.sub(t, v, t); F.normalize(t); return F.isZero(t); } private static boolean checkPointVar(byte[] p) { int[] t = new int[COORD_INTS]; decode32(p, 0, t, 0, COORD_INTS); t[COORD_INTS - 1] &= 0x7FFFFFFF; return !Nat256.gte(t, P); } private static boolean checkScalarVar(byte[] s, int[] n) { decodeScalar(s, 0, n); return !Nat256.gte(n, L); } private static byte[] copy(byte[] buf, int off, int len) { byte[] result = new byte[len]; System.arraycopy(buf, off, result, 0, len); return result; } private static Digest createDigest() { return new SHA512Digest(); } public static Digest createPrehash() { return createDigest(); } private static int decode24(byte[] bs, int off) { int n = bs[ off] & 0xFF; n |= (bs[++off] & 0xFF) << 8; n |= (bs[++off] & 0xFF) << 16; return n; } private static int decode32(byte[] bs, int off) { int n = bs[off] & 0xFF; n |= (bs[++off] & 0xFF) << 8; n |= (bs[++off] & 0xFF) << 16; n |= bs[++off] << 24; return n; } private static void decode32(byte[] bs, int bsOff, int[] n, int nOff, int nLen) { for (int i = 0; i < nLen; ++i) { n[nOff + i] = decode32(bs, bsOff + i * 4); } } private static boolean decodePointVar(byte[] p, int pOff, boolean negate, PointAffine r) { byte[] py = copy(p, pOff, POINT_BYTES); if (!checkPointVar(py)) { return false; } int x_0 = (py[POINT_BYTES - 1] & 0x80) >>> 7; py[POINT_BYTES - 1] &= 0x7F; F.decode(py, 0, r.y); int[] u = F.create(); int[] v = F.create(); F.sqr(r.y, u); F.mul(C_d, u, v); F.subOne(u); F.addOne(v); if (!F.sqrtRatioVar(u, v, r.x)) { return false; } F.normalize(r.x); if (x_0 == 1 && F.isZeroVar(r.x)) { return false; } if (negate ^ (x_0 != (r.x[0] & 1))) { F.negate(r.x, r.x); } return true; } private static void decodeScalar(byte[] k, int kOff, int[] n) { decode32(k, kOff, n, 0, SCALAR_INTS); } private static void dom2(Digest d, byte phflag, byte[] ctx) { if (ctx != null) { int n = DOM2_PREFIX.length; byte[] t = new byte[n + 2 + ctx.length]; System.arraycopy(DOM2_PREFIX, 0, t, 0, n); t[n] = phflag; t[n + 1] = (byte)ctx.length; System.arraycopy(ctx, 0, t, n + 2, ctx.length); d.update(t, 0, t.length); } } private static void encode24(int n, byte[] bs, int off) { bs[ off] = (byte)(n ); bs[++off] = (byte)(n >>> 8); bs[++off] = (byte)(n >>> 16); } private static void encode32(int n, byte[] bs, int off) { bs[ off] = (byte)(n ); bs[++off] = (byte)(n >>> 8); bs[++off] = (byte)(n >>> 16); bs[++off] = (byte)(n >>> 24); } private static void encode56(long n, byte[] bs, int off) { encode32((int)n, bs, off); encode24((int)(n >>> 32), bs, off + 4); } private static int encodePoint(PointAccum p, byte[] r, int rOff) { int[] x = F.create(); int[] y = F.create(); F.inv(p.z, y); F.mul(p.x, y, x); F.mul(p.y, y, y); F.normalize(x); F.normalize(y); int result = checkPoint(x, y); F.encode(y, r, rOff); r[rOff + POINT_BYTES - 1] |= ((x[0] & 1) << 7); return result; } public static void generatePrivateKey(SecureRandom random, byte[] k) { random.nextBytes(k); } public static void generatePublicKey(byte[] sk, int skOff, byte[] pk, int pkOff) { Digest d = createDigest(); byte[] h = new byte[d.getDigestSize()]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); scalarMultBaseEncoded(s, pk, pkOff); } private static int getWindow4(int[] x, int n) { int w = n >>> 3, b = (n & 7) << 2; return (x[w] >>> b) & 15; } private static byte[] getWnafVar(int[] n, int width) { // assert 0 <= n[SCALAR_INTS - 1] && n[SCALAR_INTS - 1] <= L[SCALAR_INTS - 1]; // assert 2 <= width && width <= 8; int[] t = new int[SCALAR_INTS * 2]; { int tPos = t.length, c = 0; int i = SCALAR_INTS; while (--i >= 0) { int next = n[i]; t[--tPos] = (next >>> 16) | (c << 16); t[--tPos] = c = next; } } byte[] ws = new byte[253]; final int lead = 32 - width; int j = 0, carry = 0; for (int i = 0; i < t.length; ++i, j -= 16) { int word = t[i]; while (j < 16) { int word16 = word >>> j; int bit = word16 & 1; if (bit == carry) { ++j; continue; } int digit = (word16 | 1) << lead; carry = digit >>> 31; ws[(i << 4) + j] = (byte)(digit >> lead); j += width; } } // assert carry == 0; return ws; } private static void implSign(Digest d, byte[] h, byte[] s, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { dom2(d, phflag, ctx); d.update(h, SCALAR_BYTES, SCALAR_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0); byte[] r = reduceScalar(h); byte[] R = new byte[POINT_BYTES]; scalarMultBaseEncoded(r, R, 0); dom2(d, phflag, ctx); d.update(R, 0, POINT_BYTES); d.update(pk, pkOff, POINT_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0); byte[] k = reduceScalar(h); byte[] S = calculateS(r, k, s); System.arraycopy(R, 0, sig, sigOff, POINT_BYTES); System.arraycopy(S, 0, sig, sigOff + POINT_BYTES, SCALAR_BYTES); } private static void implSign(byte[] sk, int skOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { if (!checkContextVar(ctx, phflag)) { throw new IllegalArgumentException("ctx"); } Digest d = createDigest(); byte[] h = new byte[d.getDigestSize()]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); byte[] pk = new byte[POINT_BYTES]; scalarMultBaseEncoded(s, pk, 0); implSign(d, h, s, pk, 0, ctx, phflag, m, mOff, mLen, sig, sigOff); } private static void implSign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { if (!checkContextVar(ctx, phflag)) { throw new IllegalArgumentException("ctx"); } Digest d = createDigest(); byte[] h = new byte[d.getDigestSize()]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); implSign(d, h, s, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } private static boolean implVerify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen) { if (!checkContextVar(ctx, phflag)) { throw new IllegalArgumentException("ctx"); } byte[] R = copy(sig, sigOff, POINT_BYTES); byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES); if (!checkPointVar(R)) { return false; } int[] nS = new int[SCALAR_INTS]; if (!checkScalarVar(S, nS)) { return false; } PointAffine pA = new PointAffine(); if (!decodePointVar(pk, pkOff, true, pA)) { return false; } Digest d = createDigest(); byte[] h = new byte[d.getDigestSize()]; dom2(d, phflag, ctx); d.update(R, 0, POINT_BYTES); d.update(pk, pkOff, POINT_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0); byte[] k = reduceScalar(h); int[] nA = new int[SCALAR_INTS]; decodeScalar(k, 0, nA); PointAccum pR = new PointAccum(); scalarMultStrausVar(nS, nA, pA, pR); byte[] check = new byte[POINT_BYTES]; return 0 != encodePoint(pR, check, 0) && Arrays.areEqual(check, R); } private static void invertDoubleZs(PointExtended[] points) { int count = points.length; int[] cs = F.createTable(count); int[] u = F.create(); F.copy(points[0].z, 0, u, 0); F.copy(u, 0, cs, 0); int i = 0; while (++i < count) { F.mul(u, points[i].z, u); F.copy(u, 0, cs, i * F.SIZE); } F.add(u, u, u); F.invVar(u, u); --i; int[] t = F.create(); while (i > 0) { int j = i--; F.copy(cs, i * F.SIZE, t, 0); F.mul(t, u, t); F.mul(u, points[j].z, u); F.copy(t, 0, points[j].z, 0); } F.copy(u, 0, points[0].z, 0); } private static boolean isNeutralElementVar(int[] x, int[] y) { return F.isZeroVar(x) && F.isOneVar(y); } private static boolean isNeutralElementVar(int[] x, int[] y, int[] z) { return F.isZeroVar(x) && F.areEqualVar(y, z); } private static void pointAdd(PointExtended p, PointExtended q, PointExtended r, PointTemp t) { // p may ref the same point as r (or q), but q may not ref the same point as r. // assert q != r; int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] d = t.r1; int[] e = a; int[] f = c; int[] g = d; int[] h = b; F.apm(p.y, p.x, b, a); F.apm(q.y, q.x, d, c); F.mul(a, c, a); F.mul(b, d, b); F.mul(p.t, q.t, c); F.mul(c, C_d2, c); F.add(p.z, p.z, d); F.mul(d, q.z, d); F.apm(b, a, h, e); F.apm(d, c, g, f); F.mul(e, h, r.t); F.mul(f, g, r.z); F.mul(e, f, r.x); F.mul(h, g, r.y); } private static void pointAdd(PointPrecomp p, PointAccum r, PointTemp t) { int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; F.apm(r.y, r.x, b, a); F.mul(a, p.ymx_h, a); F.mul(b, p.ypx_h, b); F.mul(r.u, r.v, c); F.mul(c, p.xyd, c); F.apm(b, a, h, e); F.apm(r.z, c, g, f); F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointAdd(PointPrecompZ p, PointAccum r, PointTemp t) { int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] d = r.z; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; F.apm(r.y, r.x, b, a); F.mul(a, p.ymx_h, a); F.mul(b, p.ypx_h, b); F.mul(r.u, r.v, c); F.mul(c, p.xyd, c); F.mul(r.z, p.z, d); F.apm(b, a, h, e); F.apm(d, c, g, f); F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointAddVar(boolean negate, PointPrecomp p, PointAccum r, PointTemp t) { int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; int[] na, nb; if (negate) { na = b; nb = a; } else { na = a; nb = b; } int[] nf = na, ng = nb; F.apm(r.y, r.x, b, a); F.mul(na, p.ymx_h, na); F.mul(nb, p.ypx_h, nb); F.mul(r.u, r.v, c); F.mul(c, p.xyd, c); F.apm(b, a, h, e); F.apm(r.z, c, ng, nf); F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointAddVar(boolean negate, PointPrecompZ p, PointAccum r, PointTemp t) { int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] d = r.z; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; int[] na, nb; if (negate) { na = b; nb = a; } else { na = a; nb = b; } int[] nf = na, ng = nb; F.apm(r.y, r.x, b, a); F.mul(na, p.ymx_h, na); F.mul(nb, p.ypx_h, nb); F.mul(r.u, r.v, c); F.mul(c, p.xyd, c); F.mul(r.z, p.z, d); F.apm(b, a, h, e); F.apm(d, c, ng, nf); F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointCopy(PointAccum p, PointExtended r) { F.copy(p.x, 0, r.x, 0); F.copy(p.y, 0, r.y, 0); F.copy(p.z, 0, r.z, 0); F.mul(p.u, p.v, r.t); } private static void pointCopy(PointAffine p, PointExtended r) { F.copy(p.x, 0, r.x, 0); F.copy(p.y, 0, r.y, 0); F.one(r.z); F.mul(p.x, p.y, r.t); } private static void pointCopy(PointExtended p, PointPrecompZ r) { // To avoid halving x and y, we double t and z instead. F.apm(p.y, p.x, r.ypx_h, r.ymx_h); F.mul(p.t, C_d2, r.xyd); F.add(p.z, p.z, r.z); } private static void pointDouble(PointAccum r) { int[] a = r.x; int[] b = r.y; int[] c = r.z; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; F.add(r.x, r.y, e); F.sqr(r.x, a); F.sqr(r.y, b); F.sqr(r.z, c); F.add(c, c, c); F.apm(a, b, h, g); F.sqr(e, e); F.sub(h, e, e); F.add(c, g, f); F.carry(f); // Probably unnecessary, but keep until better bounds analysis available F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointLookup(int block, int index, PointPrecomp p) { // assert 0 <= block && block < PRECOMP_BLOCKS; // assert 0 <= index && index < PRECOMP_POINTS; int off = block * PRECOMP_POINTS * 3 * F.SIZE; for (int i = 0; i < PRECOMP_POINTS; ++i) { int cond = ((i ^ index) - 1) >> 31; F.cmov(cond, PRECOMP_BASE_COMB, off, p.ymx_h, 0); off += F.SIZE; F.cmov(cond, PRECOMP_BASE_COMB, off, p.ypx_h, 0); off += F.SIZE; F.cmov(cond, PRECOMP_BASE_COMB, off, p.xyd, 0); off += F.SIZE; } } private static void pointLookupZ(int[] x, int n, int[] table, PointPrecompZ r) { // TODO This method is currently hard-coded to 4-bit windows and 8 precomputed points int w = getWindow4(x, n); int sign = (w >>> (4 - 1)) ^ 1; int abs = (w ^ -sign) & 7; // assert sign == 0 || sign == 1; // assert 0 <= abs && abs < 8; for (int i = 0, off = 0; i < 8; ++i) { int cond = ((i ^ abs) - 1) >> 31; F.cmov(cond, table, off, r.ymx_h, 0); off += F.SIZE; F.cmov(cond, table, off, r.ypx_h, 0); off += F.SIZE; F.cmov(cond, table, off, r.xyd , 0); off += F.SIZE; F.cmov(cond, table, off, r.z , 0); off += F.SIZE; } F.cswap(sign, r.ymx_h, r.ypx_h); F.cnegate(sign, r.xyd); } private static void pointPrecompute(PointAffine p, PointExtended[] points, int count, PointTemp t) { // assert count > 0; pointCopy(p, points[0] = new PointExtended()); PointExtended d = new PointExtended(); pointAdd(points[0], points[0], d, t); for (int i = 1; i < count; ++i) { pointAdd(points[i - 1], d, points[i] = new PointExtended(), t); } } private static int[] pointPrecomputeZ(PointAffine p, int count, PointTemp t) { // assert count > 0; PointExtended q = new PointExtended(); pointCopy(p, q); PointExtended d = new PointExtended(); pointAdd(q, q, d, t); PointPrecompZ r = new PointPrecompZ(); int[] table = F.createTable(count * 4); int off = 0; int i = 0; for (;;) { pointCopy(q, r); F.copy(r.ymx_h, 0, table, off); off += F.SIZE; F.copy(r.ypx_h, 0, table, off); off += F.SIZE; F.copy(r.xyd , 0, table, off); off += F.SIZE; F.copy(r.z , 0, table, off); off += F.SIZE; if (++i == count) { break; } pointAdd(q, d, q, t); } return table; } private static void pointPrecomputeZ(PointAffine p, PointPrecompZ[] points, int count, PointTemp t) { // assert count > 0; PointExtended q = new PointExtended(); pointCopy(p, q); PointExtended d = new PointExtended(); pointAdd(q, q, d, t); int i = 0; for (;;) { PointPrecompZ r = points[i] = new PointPrecompZ(); pointCopy(q, r); if (++i == count) { break; } pointAdd(q, d, q, t); } } private static void pointSetNeutral(PointAccum p) { F.zero(p.x); F.one(p.y); F.one(p.z); F.zero(p.u); F.one(p.v); } public static void precompute() { synchronized (PRECOMP_LOCK) { if (PRECOMP_BASE_WNAF != null && PRECOMP_BASE_COMB != null) { return; } int wnafPoints = 1 << (WNAF_WIDTH_BASE - 2); int combPoints = PRECOMP_BLOCKS * PRECOMP_POINTS; int totalPoints = wnafPoints + combPoints; PointExtended[] points = new PointExtended[totalPoints]; PointTemp t = new PointTemp(); PointAffine b = new PointAffine(); F.copy(B_x, 0, b.x, 0); F.copy(B_y, 0, b.y, 0); pointPrecompute(b, points, wnafPoints, t); PointAccum p = new PointAccum(); F.copy(B_x, 0, p.x, 0); F.copy(B_y, 0, p.y, 0); F.one(p.z); F.copy(p.x, 0, p.u, 0); F.copy(p.y, 0, p.v, 0); int pointsIndex = wnafPoints; PointExtended[] toothPowers = new PointExtended[PRECOMP_TEETH]; for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth) { toothPowers[tooth] = new PointExtended(); } PointExtended u = new PointExtended(); for (int block = 0; block < PRECOMP_BLOCKS; ++block) { PointExtended sum = points[pointsIndex++] = new PointExtended(); for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth) { if (tooth == 0) { pointCopy(p, sum); } else { pointCopy(p, u); pointAdd(sum, u, sum, t); } pointDouble(p); pointCopy(p, toothPowers[tooth]); if (block + tooth != PRECOMP_BLOCKS + PRECOMP_TEETH - 2) { for (int spacing = 1; spacing < PRECOMP_SPACING; ++spacing) { pointDouble(p); } } } F.negate(sum.x, sum.x); F.negate(sum.t, sum.t); for (int tooth = 0; tooth < (PRECOMP_TEETH - 1); ++tooth) { int size = 1 << tooth; for (int j = 0; j < size; ++j, ++pointsIndex) { points[pointsIndex] = new PointExtended(); pointAdd(points[pointsIndex - size], toothPowers[tooth], points[pointsIndex], t); } } } // assert pointsIndex == totalPoints; // Set each z coordinate to 1/(2.z) to avoid calculating halves of x, y in the following code invertDoubleZs(points); PRECOMP_BASE_WNAF = new PointPrecomp[wnafPoints]; for (int i = 0; i < wnafPoints; ++i) { PointExtended q = points[i]; PointPrecomp r = PRECOMP_BASE_WNAF[i] = new PointPrecomp(); // Calculate x/2 and y/2 (because the z value holds half the inverse; see above). F.mul(q.x, q.z, q.x); F.mul(q.y, q.z, q.y); // y/2 +/- x/2 F.apm(q.y, q.x, r.ypx_h, r.ymx_h); // x/2 * y/2 * (4.d) == x.y.d F.mul(q.x, q.y, r.xyd); F.mul(r.xyd, C_d4, r.xyd); F.normalize(r.ymx_h); F.normalize(r.ypx_h); F.normalize(r.xyd); } PRECOMP_BASE_COMB = F.createTable(combPoints * 3); PointPrecomp s = new PointPrecomp(); int off = 0; for (int i = wnafPoints; i < totalPoints; ++i) { PointExtended q = points[i]; // Calculate x/2 and y/2 (because the z value holds half the inverse; see above). F.mul(q.x, q.z, q.x); F.mul(q.y, q.z, q.y); // y/2 +/- x/2 F.apm(q.y, q.x, s.ypx_h, s.ymx_h); // x/2 * y/2 * (4.d) == x.y.d F.mul(q.x, q.y, s.xyd); F.mul(s.xyd, C_d4, s.xyd); F.normalize(s.ymx_h); F.normalize(s.ypx_h); F.normalize(s.xyd); F.copy(s.ymx_h, 0, PRECOMP_BASE_COMB, off); off += F.SIZE; F.copy(s.ypx_h, 0, PRECOMP_BASE_COMB, off); off += F.SIZE; F.copy(s.xyd , 0, PRECOMP_BASE_COMB, off); off += F.SIZE; } // assert off == precompBaseComb.length; } } private static void pruneScalar(byte[] n, int nOff, byte[] r) { System.arraycopy(n, nOff, r, 0, SCALAR_BYTES); r[0] &= 0xF8; r[SCALAR_BYTES - 1] &= 0x7F; r[SCALAR_BYTES - 1] |= 0x40; } private static byte[] reduceScalar(byte[] n) { long x00 = decode32(n, 0) & M32L; // x00:32/-- long x01 = (decode24(n, 4) << 4) & M32L; // x01:28/-- long x02 = decode32(n, 7) & M32L; // x02:32/-- long x03 = (decode24(n, 11) << 4) & M32L; // x03:28/-- long x04 = decode32(n, 14) & M32L; // x04:32/-- long x05 = (decode24(n, 18) << 4) & M32L; // x05:28/-- long x06 = decode32(n, 21) & M32L; // x06:32/-- long x07 = (decode24(n, 25) << 4) & M32L; // x07:28/-- long x08 = decode32(n, 28) & M32L; // x08:32/-- long x09 = (decode24(n, 32) << 4) & M32L; // x09:28/-- long x10 = decode32(n, 35) & M32L; // x10:32/-- long x11 = (decode24(n, 39) << 4) & M32L; // x11:28/-- long x12 = decode32(n, 42) & M32L; // x12:32/-- long x13 = (decode24(n, 46) << 4) & M32L; // x13:28/-- long x14 = decode32(n, 49) & M32L; // x14:32/-- long x15 = (decode24(n, 53) << 4) & M32L; // x15:28/-- long x16 = decode32(n, 56) & M32L; // x16:32/-- long x17 = (decode24(n, 60) << 4) & M32L; // x17:28/-- long x18 = n[63] & M08L; // x18:08/-- long t; // x18 += (x17 >> 28); x17 &= M28L; x09 -= x18 * L0; // x09:34/28 x10 -= x18 * L1; // x10:33/30 x11 -= x18 * L2; // x11:35/28 x12 -= x18 * L3; // x12:32/31 x13 -= x18 * L4; // x13:28/21 x17 += (x16 >> 28); x16 &= M28L; // x17:28/--, x16:28/-- x08 -= x17 * L0; // x08:54/32 x09 -= x17 * L1; // x09:52/51 x10 -= x17 * L2; // x10:55/34 x11 -= x17 * L3; // x11:51/36 x12 -= x17 * L4; // x12:41/-- // x16 += (x15 >> 28); x15 &= M28L; x07 -= x16 * L0; // x07:54/28 x08 -= x16 * L1; // x08:54/53 x09 -= x16 * L2; // x09:55/53 x10 -= x16 * L3; // x10:55/52 x11 -= x16 * L4; // x11:51/41 x15 += (x14 >> 28); x14 &= M28L; // x15:28/--, x14:28/-- x06 -= x15 * L0; // x06:54/32 x07 -= x15 * L1; // x07:54/53 x08 -= x15 * L2; // x08:56/-- x09 -= x15 * L3; // x09:55/54 x10 -= x15 * L4; // x10:55/53 // x14 += (x13 >> 28); x13 &= M28L; x05 -= x14 * L0; // x05:54/28 x06 -= x14 * L1; // x06:54/53 x07 -= x14 * L2; // x07:56/-- x08 -= x14 * L3; // x08:56/51 x09 -= x14 * L4; // x09:56/-- x13 += (x12 >> 28); x12 &= M28L; // x13:28/22, x12:28/-- x04 -= x13 * L0; // x04:54/49 x05 -= x13 * L1; // x05:54/53 x06 -= x13 * L2; // x06:56/-- x07 -= x13 * L3; // x07:56/52 x08 -= x13 * L4; // x08:56/52 x12 += (x11 >> 28); x11 &= M28L; // x12:28/24, x11:28/-- x03 -= x12 * L0; // x03:54/49 x04 -= x12 * L1; // x04:54/51 x05 -= x12 * L2; // x05:56/-- x06 -= x12 * L3; // x06:56/52 x07 -= x12 * L4; // x07:56/53 x11 += (x10 >> 28); x10 &= M28L; // x11:29/--, x10:28/-- x02 -= x11 * L0; // x02:55/32 x03 -= x11 * L1; // x03:55/-- x04 -= x11 * L2; // x04:56/55 x05 -= x11 * L3; // x05:56/52 x06 -= x11 * L4; // x06:56/53 x10 += (x09 >> 28); x09 &= M28L; // x10:29/--, x09:28/-- x01 -= x10 * L0; // x01:55/28 x02 -= x10 * L1; // x02:55/54 x03 -= x10 * L2; // x03:56/55 x04 -= x10 * L3; // x04:57/-- x05 -= x10 * L4; // x05:56/53 x08 += (x07 >> 28); x07 &= M28L; // x08:56/53, x07:28/-- x09 += (x08 >> 28); x08 &= M28L; // x09:29/25, x08:28/-- t = x08 >>> 27; x09 += t; // x09:29/26 x00 -= x09 * L0; // x00:55/53 x01 -= x09 * L1; // x01:55/54 x02 -= x09 * L2; // x02:57/-- x03 -= x09 * L3; // x03:57/-- x04 -= x09 * L4; // x04:57/42 x01 += (x00 >> 28); x00 &= M28L; x02 += (x01 >> 28); x01 &= M28L; x03 += (x02 >> 28); x02 &= M28L; x04 += (x03 >> 28); x03 &= M28L; x05 += (x04 >> 28); x04 &= M28L; x06 += (x05 >> 28); x05 &= M28L; x07 += (x06 >> 28); x06 &= M28L; x08 += (x07 >> 28); x07 &= M28L; x09 = (x08 >> 28); x08 &= M28L; x09 -= t; // assert x09 == 0L || x09 == -1L; x00 += x09 & L0; x01 += x09 & L1; x02 += x09 & L2; x03 += x09 & L3; x04 += x09 & L4; x01 += (x00 >> 28); x00 &= M28L; x02 += (x01 >> 28); x01 &= M28L; x03 += (x02 >> 28); x02 &= M28L; x04 += (x03 >> 28); x03 &= M28L; x05 += (x04 >> 28); x04 &= M28L; x06 += (x05 >> 28); x05 &= M28L; x07 += (x06 >> 28); x06 &= M28L; x08 += (x07 >> 28); x07 &= M28L; byte[] r = new byte[SCALAR_BYTES]; encode56(x00 | (x01 << 28), r, 0); encode56(x02 | (x03 << 28), r, 7); encode56(x04 | (x05 << 28), r, 14); encode56(x06 | (x07 << 28), r, 21); encode32((int)x08, r, 28); return r; } private static void scalarMult(byte[] k, PointAffine p, PointAccum r) { int[] n = new int[SCALAR_INTS]; decodeScalar(k, 0, n); // Recode the scalar into signed-digit form { //int c1 = Nat.cadd(SCALAR_INTS, ~n[0] & 1, n, L, n); //assert c1 == 0; //int c2 = Nat.shiftDownBit(SCALAR_INTS, n, 1); //assert c2 == (1 << 31); } PointPrecompZ q = new PointPrecompZ(); PointTemp t = new PointTemp(); int[] table = pointPrecomputeZ(p, 8, t); pointSetNeutral(r); int w = 63; for (;;) { pointLookupZ(n, w, table, q); pointAdd(q, r, t); if (--w < 0) { break; } for (int i = 0; i < 4; ++i) { pointDouble(r); } } } private static void scalarMultBase(byte[] k, PointAccum r) { // Equivalent (but much slower) // PointAffine p = new PointAffine(); // F.copy(B_x, 0, p.x, 0); // F.copy(B_y, 0, p.y, 0); // scalarMult(k, p, r); precompute(); int[] n = new int[SCALAR_INTS]; decodeScalar(k, 0, n); // Recode the scalar into signed-digit form, then group comb bits in each block { //int c1 = Nat.cadd(SCALAR_INTS, ~n[0] & 1, n, L, n); //assert c1 == 0; //int c2 = Nat.shiftDownBit(SCALAR_INTS, n, 1); //assert c2 == (1 << 31); /* * Because we are using 4 teeth and 8 spacing, each limb of n corresponds to one of the 8 blocks. * Therefore we can efficiently group the bits for each comb position using a (double) shuffle. */ for (int i = 0; i < SCALAR_INTS; ++i) { n[i] = Interleave.shuffle2(n[i]); } } PointPrecomp p = new PointPrecomp(); PointTemp t = new PointTemp(); pointSetNeutral(r); int resultSign = 0; int cOff = (PRECOMP_SPACING - 1) * PRECOMP_TEETH; for (;;) { for (int b = 0; b < PRECOMP_BLOCKS; ++b) { int w = n[b] >>> cOff; int sign = (w >>> (PRECOMP_TEETH - 1)) & 1; int abs = (w ^ -sign) & PRECOMP_MASK; // assert sign == 0 || sign == 1; // assert 0 <= abs && abs < PRECOMP_POINTS; pointLookup(b, abs, p); F.cnegate(resultSign ^ sign, r.x); F.cnegate(resultSign ^ sign, r.u); resultSign = sign; pointAdd(p, r, t); } if ((cOff -= PRECOMP_TEETH) < 0) { break; } pointDouble(r); } F.cnegate(resultSign, r.x); F.cnegate(resultSign, r.u); } private static void scalarMultBaseEncoded(byte[] k, byte[] r, int rOff) { PointAccum p = new PointAccum(); scalarMultBase(k, p); if (0 == encodePoint(p, r, rOff)) { throw new IllegalStateException(); } } /** * NOTE: Only for use by X25519 */ public static void scalarMultBaseYZ(X25519.Friend friend, byte[] k, int kOff, int[] y, int[] z) { if (null == friend) { throw new NullPointerException("This method is only for use by X25519"); } byte[] n = new byte[SCALAR_BYTES]; pruneScalar(k, kOff, n); PointAccum p = new PointAccum(); scalarMultBase(n, p); if (0 == checkPoint(p.x, p.y, p.z)) { throw new IllegalStateException(); } F.copy(p.y, 0, y, 0); F.copy(p.z, 0, z, 0); } private static void scalarMultOrderVar(PointAffine p, PointAccum r) { byte[] ws_p = getWnafVar(L, WNAF_WIDTH); int count = 1 << (WNAF_WIDTH - 2); PointPrecompZ[] tp = new PointPrecompZ[count]; PointTemp t = new PointTemp(); pointPrecomputeZ(p, tp, count, t); pointSetNeutral(r); for (int bit = 252;;) { int wp = ws_p[bit]; if (wp != 0) { int sign = wp >> 31; int index = (wp ^ sign) >>> 1; pointAddVar((sign != 0), tp[index], r, t); } if (--bit < 0) { break; } pointDouble(r); } } private static void scalarMultStrausVar(int[] nb, int[] np, PointAffine p, PointAccum r) { precompute(); byte[] ws_b = getWnafVar(nb, WNAF_WIDTH_BASE); byte[] ws_p = getWnafVar(np, WNAF_WIDTH); int count = 1 << (WNAF_WIDTH - 2); PointPrecompZ[] tp = new PointPrecompZ[count]; PointTemp t = new PointTemp(); pointPrecomputeZ(p, tp, count, t); pointSetNeutral(r); for (int bit = 252;;) { int wb = ws_b[bit]; if (wb != 0) { int sign = wb >> 31; int index = (wb ^ sign) >>> 1; pointAddVar(sign != 0, PRECOMP_BASE_WNAF[index], r, t); } int wp = ws_p[bit]; if (wp != 0) { int sign = wp >> 31; int index = (wp ^ sign) >>> 1; pointAddVar(sign != 0, tp[index], r, t); } if (--bit < 0) { break; } pointDouble(r); } } public static void sign(byte[] sk, int skOff, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte[] ctx = null; byte phflag = 0x00; implSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte[] ctx = null; byte phflag = 0x00; implSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void sign(byte[] sk, int skOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte phflag = 0x00; implSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte phflag = 0x00; implSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff) { byte phflag = 0x01; implSign(sk, skOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff) { byte phflag = 0x01; implSign(sk, skOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] ctx, Digest ph, byte[] sig, int sigOff) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; implSign(sk, skOff, ctx, phflag, m, 0, m.length, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, Digest ph, byte[] sig, int sigOff) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; implSign(sk, skOff, pk, pkOff, ctx, phflag, m, 0, m.length, sig, sigOff); } public static boolean validatePublicKeyFull(byte[] pk, int pkOff) { PointAffine p = new PointAffine(); if (!decodePointVar(pk, pkOff, false, p)) { return false; } F.normalize(p.x); F.normalize(p.y); if (isNeutralElementVar(p.x, p.y)) { return false; } PointAccum r = new PointAccum(); scalarMultOrderVar(p, r); F.normalize(r.x); F.normalize(r.y); F.normalize(r.z); return isNeutralElementVar(r.x, r.y, r.z); } public static boolean validatePublicKeyPartial(byte[] pk, int pkOff) { PointAffine p = new PointAffine(); return decodePointVar(pk, pkOff, false, p); } public static boolean verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] m, int mOff, int mLen) { byte[] ctx = null; byte phflag = 0x00; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen); } public static boolean verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen) { byte phflag = 0x00; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen); } public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff) { byte phflag = 0x01; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE); } public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, Digest ph) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, 0, m.length); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy