All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.TnepresEngine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.crypto.engines;

import org.bouncycastle.util.Pack;

/**
 * Tnepres is a 128-bit 32-round block cipher with variable key lengths,
 * including 128, 192 and 256 bit keys conjectured to be at least as
 * secure as three-key triple-DES.
 * 

* Tnepres is based on Serpent which was designed by Ross Anderson, Eli Biham and Lars Knudsen as a * candidate algorithm for the NIST AES Quest. Unfortunately there was an endianness issue * with test vectors in the AES submission and the resulting confusion lead to the Tnepres cipher * as well, which is a byte swapped version of Serpent. *

* For full details see The Serpent home page */ public final class TnepresEngine extends SerpentEngineBase { public String getAlgorithmName() { return "Tnepres"; } /** * Expand a user-supplied key material into a session key. * * @param key The user-key bytes (multiples of 4) to use. * @exception IllegalArgumentException */ protected int[] makeWorkingKey( byte[] key) throws IllegalArgumentException { // // pad key to 256 bits // int[] kPad = new int[16]; int off = 0; int length = 0; for (off = key.length - 4; off > 0; off -= 4) { kPad[length++] = Pack.bigEndianToInt(key, off); } if (off == 0) { kPad[length++] = Pack.bigEndianToInt(key, 0); if (length < 8) { kPad[length] = 1; } } else { throw new IllegalArgumentException("key must be a multiple of 4 bytes"); } // // expand the padded key up to 33 x 128 bits of key material // int amount = (ROUNDS + 1) * 4; int[] w = new int[amount]; // // compute w0 to w7 from w-8 to w-1 // for (int i = 8; i < 16; i++) { kPad[i] = rotateLeft(kPad[i - 8] ^ kPad[i - 5] ^ kPad[i - 3] ^ kPad[i - 1] ^ PHI ^ (i - 8), 11); } System.arraycopy(kPad, 8, w, 0, 8); // // compute w8 to w136 // for (int i = 8; i < amount; i++) { w[i] = rotateLeft(w[i - 8] ^ w[i - 5] ^ w[i - 3] ^ w[i - 1] ^ PHI ^ i, 11); } // // create the working keys by processing w with the Sbox and IP // int[] X = new int[4]; sb3(X, w[0], w[1], w[2], w[3]); w[0] = X[0]; w[1] = X[1]; w[2] = X[2]; w[3] = X[3]; sb2(X, w[4], w[5], w[6], w[7]); w[4] = X[0]; w[5] = X[1]; w[6] = X[2]; w[7] = X[3]; sb1(X, w[8], w[9], w[10], w[11]); w[8] = X[0]; w[9] = X[1]; w[10] = X[2]; w[11] = X[3]; sb0(X, w[12], w[13], w[14], w[15]); w[12] = X[0]; w[13] = X[1]; w[14] = X[2]; w[15] = X[3]; sb7(X, w[16], w[17], w[18], w[19]); w[16] = X[0]; w[17] = X[1]; w[18] = X[2]; w[19] = X[3]; sb6(X, w[20], w[21], w[22], w[23]); w[20] = X[0]; w[21] = X[1]; w[22] = X[2]; w[23] = X[3]; sb5(X, w[24], w[25], w[26], w[27]); w[24] = X[0]; w[25] = X[1]; w[26] = X[2]; w[27] = X[3]; sb4(X, w[28], w[29], w[30], w[31]); w[28] = X[0]; w[29] = X[1]; w[30] = X[2]; w[31] = X[3]; sb3(X, w[32], w[33], w[34], w[35]); w[32] = X[0]; w[33] = X[1]; w[34] = X[2]; w[35] = X[3]; sb2(X, w[36], w[37], w[38], w[39]); w[36] = X[0]; w[37] = X[1]; w[38] = X[2]; w[39] = X[3]; sb1(X, w[40], w[41], w[42], w[43]); w[40] = X[0]; w[41] = X[1]; w[42] = X[2]; w[43] = X[3]; sb0(X, w[44], w[45], w[46], w[47]); w[44] = X[0]; w[45] = X[1]; w[46] = X[2]; w[47] = X[3]; sb7(X, w[48], w[49], w[50], w[51]); w[48] = X[0]; w[49] = X[1]; w[50] = X[2]; w[51] = X[3]; sb6(X, w[52], w[53], w[54], w[55]); w[52] = X[0]; w[53] = X[1]; w[54] = X[2]; w[55] = X[3]; sb5(X, w[56], w[57], w[58], w[59]); w[56] = X[0]; w[57] = X[1]; w[58] = X[2]; w[59] = X[3]; sb4(X, w[60], w[61], w[62], w[63]); w[60] = X[0]; w[61] = X[1]; w[62] = X[2]; w[63] = X[3]; sb3(X, w[64], w[65], w[66], w[67]); w[64] = X[0]; w[65] = X[1]; w[66] = X[2]; w[67] = X[3]; sb2(X, w[68], w[69], w[70], w[71]); w[68] = X[0]; w[69] = X[1]; w[70] = X[2]; w[71] = X[3]; sb1(X, w[72], w[73], w[74], w[75]); w[72] = X[0]; w[73] = X[1]; w[74] = X[2]; w[75] = X[3]; sb0(X, w[76], w[77], w[78], w[79]); w[76] = X[0]; w[77] = X[1]; w[78] = X[2]; w[79] = X[3]; sb7(X, w[80], w[81], w[82], w[83]); w[80] = X[0]; w[81] = X[1]; w[82] = X[2]; w[83] = X[3]; sb6(X, w[84], w[85], w[86], w[87]); w[84] = X[0]; w[85] = X[1]; w[86] = X[2]; w[87] = X[3]; sb5(X, w[88], w[89], w[90], w[91]); w[88] = X[0]; w[89] = X[1]; w[90] = X[2]; w[91] = X[3]; sb4(X, w[92], w[93], w[94], w[95]); w[92] = X[0]; w[93] = X[1]; w[94] = X[2]; w[95] = X[3]; sb3(X, w[96], w[97], w[98], w[99]); w[96] = X[0]; w[97] = X[1]; w[98] = X[2]; w[99] = X[3]; sb2(X, w[100], w[101], w[102], w[103]); w[100] = X[0]; w[101] = X[1]; w[102] = X[2]; w[103] = X[3]; sb1(X, w[104], w[105], w[106], w[107]); w[104] = X[0]; w[105] = X[1]; w[106] = X[2]; w[107] = X[3]; sb0(X, w[108], w[109], w[110], w[111]); w[108] = X[0]; w[109] = X[1]; w[110] = X[2]; w[111] = X[3]; sb7(X, w[112], w[113], w[114], w[115]); w[112] = X[0]; w[113] = X[1]; w[114] = X[2]; w[115] = X[3]; sb6(X, w[116], w[117], w[118], w[119]); w[116] = X[0]; w[117] = X[1]; w[118] = X[2]; w[119] = X[3]; sb5(X, w[120], w[121], w[122], w[123]); w[120] = X[0]; w[121] = X[1]; w[122] = X[2]; w[123] = X[3]; sb4(X, w[124], w[125], w[126], w[127]); w[124] = X[0]; w[125] = X[1]; w[126] = X[2]; w[127] = X[3]; sb3(X, w[128], w[129], w[130], w[131]); w[128] = X[0]; w[129] = X[1]; w[130] = X[2]; w[131] = X[3]; return w; } /** * Encrypt one block of plaintext. * * @param input the array containing the input data. * @param inOff offset into the in array the data starts at. * @param output the array the output data will be copied into. * @param outOff the offset into the out array the output will start at. */ protected void encryptBlock( byte[] input, int inOff, byte[] output, int outOff) { int[] X = new int[4]; X[3] = Pack.bigEndianToInt(input, inOff); X[2] = Pack.bigEndianToInt(input, inOff + 4); X[1] = Pack.bigEndianToInt(input, inOff + 8); X[0] = Pack.bigEndianToInt(input, inOff + 12); sb0(X, wKey[0] ^ X[0], wKey[1] ^ X[1], wKey[2] ^ X[2], wKey[3] ^ X[3]); LT(X); sb1(X, wKey[4] ^ X[0], wKey[5] ^ X[1], wKey[6] ^ X[2], wKey[7] ^ X[3]); LT(X); sb2(X, wKey[8] ^ X[0], wKey[9] ^ X[1], wKey[10] ^ X[2], wKey[11] ^ X[3]); LT(X); sb3(X, wKey[12] ^ X[0], wKey[13] ^ X[1], wKey[14] ^ X[2], wKey[15] ^ X[3]); LT(X); sb4(X, wKey[16] ^ X[0], wKey[17] ^ X[1], wKey[18] ^ X[2], wKey[19] ^ X[3]); LT(X); sb5(X, wKey[20] ^ X[0], wKey[21] ^ X[1], wKey[22] ^ X[2], wKey[23] ^ X[3]); LT(X); sb6(X, wKey[24] ^ X[0], wKey[25] ^ X[1], wKey[26] ^ X[2], wKey[27] ^ X[3]); LT(X); sb7(X, wKey[28] ^ X[0], wKey[29] ^ X[1], wKey[30] ^ X[2], wKey[31] ^ X[3]); LT(X); sb0(X, wKey[32] ^ X[0], wKey[33] ^ X[1], wKey[34] ^ X[2], wKey[35] ^ X[3]); LT(X); sb1(X, wKey[36] ^ X[0], wKey[37] ^ X[1], wKey[38] ^ X[2], wKey[39] ^ X[3]); LT(X); sb2(X, wKey[40] ^ X[0], wKey[41] ^ X[1], wKey[42] ^ X[2], wKey[43] ^ X[3]); LT(X); sb3(X, wKey[44] ^ X[0], wKey[45] ^ X[1], wKey[46] ^ X[2], wKey[47] ^ X[3]); LT(X); sb4(X, wKey[48] ^ X[0], wKey[49] ^ X[1], wKey[50] ^ X[2], wKey[51] ^ X[3]); LT(X); sb5(X, wKey[52] ^ X[0], wKey[53] ^ X[1], wKey[54] ^ X[2], wKey[55] ^ X[3]); LT(X); sb6(X, wKey[56] ^ X[0], wKey[57] ^ X[1], wKey[58] ^ X[2], wKey[59] ^ X[3]); LT(X); sb7(X, wKey[60] ^ X[0], wKey[61] ^ X[1], wKey[62] ^ X[2], wKey[63] ^ X[3]); LT(X); sb0(X, wKey[64] ^ X[0], wKey[65] ^ X[1], wKey[66] ^ X[2], wKey[67] ^ X[3]); LT(X); sb1(X, wKey[68] ^ X[0], wKey[69] ^ X[1], wKey[70] ^ X[2], wKey[71] ^ X[3]); LT(X); sb2(X, wKey[72] ^ X[0], wKey[73] ^ X[1], wKey[74] ^ X[2], wKey[75] ^ X[3]); LT(X); sb3(X, wKey[76] ^ X[0], wKey[77] ^ X[1], wKey[78] ^ X[2], wKey[79] ^ X[3]); LT(X); sb4(X, wKey[80] ^ X[0], wKey[81] ^ X[1], wKey[82] ^ X[2], wKey[83] ^ X[3]); LT(X); sb5(X, wKey[84] ^ X[0], wKey[85] ^ X[1], wKey[86] ^ X[2], wKey[87] ^ X[3]); LT(X); sb6(X, wKey[88] ^ X[0], wKey[89] ^ X[1], wKey[90] ^ X[2], wKey[91] ^ X[3]); LT(X); sb7(X, wKey[92] ^ X[0], wKey[93] ^ X[1], wKey[94] ^ X[2], wKey[95] ^ X[3]); LT(X); sb0(X, wKey[96] ^ X[0], wKey[97] ^ X[1], wKey[98] ^ X[2], wKey[99] ^ X[3]); LT(X); sb1(X, wKey[100] ^ X[0], wKey[101] ^ X[1], wKey[102] ^ X[2], wKey[103] ^ X[3]); LT(X); sb2(X, wKey[104] ^ X[0], wKey[105] ^ X[1], wKey[106] ^ X[2], wKey[107] ^ X[3]); LT(X); sb3(X, wKey[108] ^ X[0], wKey[109] ^ X[1], wKey[110] ^ X[2], wKey[111] ^ X[3]); LT(X); sb4(X, wKey[112] ^ X[0], wKey[113] ^ X[1], wKey[114] ^ X[2], wKey[115] ^ X[3]); LT(X); sb5(X, wKey[116] ^ X[0], wKey[117] ^ X[1], wKey[118] ^ X[2], wKey[119] ^ X[3]); LT(X); sb6(X, wKey[120] ^ X[0], wKey[121] ^ X[1], wKey[122] ^ X[2], wKey[123] ^ X[3]); LT(X); sb7(X, wKey[124] ^ X[0], wKey[125] ^ X[1], wKey[126] ^ X[2], wKey[127] ^ X[3]); Pack.intToBigEndian(wKey[131] ^ X[3], output, outOff); Pack.intToBigEndian(wKey[130] ^ X[2], output, outOff + 4); Pack.intToBigEndian(wKey[129] ^ X[1], output, outOff + 8); Pack.intToBigEndian(wKey[128] ^ X[0], output, outOff + 12); } /** * Decrypt one block of ciphertext. * * @param input the array containing the input data. * @param inOff offset into the in array the data starts at. * @param output the array the output data will be copied into. * @param outOff the offset into the out array the output will start at. */ protected void decryptBlock( byte[] input, int inOff, byte[] output, int outOff) { int[] X = new int[4]; X[3] = wKey[131] ^ Pack.bigEndianToInt(input, inOff); X[2] = wKey[130] ^ Pack.bigEndianToInt(input, inOff + 4); X[1] = wKey[129] ^ Pack.bigEndianToInt(input, inOff + 8); X[0] = wKey[128] ^ Pack.bigEndianToInt(input, inOff + 12); ib7(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[124]; X[1] ^= wKey[125]; X[2] ^= wKey[126]; X[3] ^= wKey[127]; inverseLT(X); ib6(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[120]; X[1] ^= wKey[121]; X[2] ^= wKey[122]; X[3] ^= wKey[123]; inverseLT(X); ib5(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[116]; X[1] ^= wKey[117]; X[2] ^= wKey[118]; X[3] ^= wKey[119]; inverseLT(X); ib4(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[112]; X[1] ^= wKey[113]; X[2] ^= wKey[114]; X[3] ^= wKey[115]; inverseLT(X); ib3(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[108]; X[1] ^= wKey[109]; X[2] ^= wKey[110]; X[3] ^= wKey[111]; inverseLT(X); ib2(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[104]; X[1] ^= wKey[105]; X[2] ^= wKey[106]; X[3] ^= wKey[107]; inverseLT(X); ib1(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[100]; X[1] ^= wKey[101]; X[2] ^= wKey[102]; X[3] ^= wKey[103]; inverseLT(X); ib0(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[96]; X[1] ^= wKey[97]; X[2] ^= wKey[98]; X[3] ^= wKey[99]; inverseLT(X); ib7(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[92]; X[1] ^= wKey[93]; X[2] ^= wKey[94]; X[3] ^= wKey[95]; inverseLT(X); ib6(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[88]; X[1] ^= wKey[89]; X[2] ^= wKey[90]; X[3] ^= wKey[91]; inverseLT(X); ib5(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[84]; X[1] ^= wKey[85]; X[2] ^= wKey[86]; X[3] ^= wKey[87]; inverseLT(X); ib4(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[80]; X[1] ^= wKey[81]; X[2] ^= wKey[82]; X[3] ^= wKey[83]; inverseLT(X); ib3(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[76]; X[1] ^= wKey[77]; X[2] ^= wKey[78]; X[3] ^= wKey[79]; inverseLT(X); ib2(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[72]; X[1] ^= wKey[73]; X[2] ^= wKey[74]; X[3] ^= wKey[75]; inverseLT(X); ib1(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[68]; X[1] ^= wKey[69]; X[2] ^= wKey[70]; X[3] ^= wKey[71]; inverseLT(X); ib0(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[64]; X[1] ^= wKey[65]; X[2] ^= wKey[66]; X[3] ^= wKey[67]; inverseLT(X); ib7(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[60]; X[1] ^= wKey[61]; X[2] ^= wKey[62]; X[3] ^= wKey[63]; inverseLT(X); ib6(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[56]; X[1] ^= wKey[57]; X[2] ^= wKey[58]; X[3] ^= wKey[59]; inverseLT(X); ib5(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[52]; X[1] ^= wKey[53]; X[2] ^= wKey[54]; X[3] ^= wKey[55]; inverseLT(X); ib4(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[48]; X[1] ^= wKey[49]; X[2] ^= wKey[50]; X[3] ^= wKey[51]; inverseLT(X); ib3(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[44]; X[1] ^= wKey[45]; X[2] ^= wKey[46]; X[3] ^= wKey[47]; inverseLT(X); ib2(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[40]; X[1] ^= wKey[41]; X[2] ^= wKey[42]; X[3] ^= wKey[43]; inverseLT(X); ib1(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[36]; X[1] ^= wKey[37]; X[2] ^= wKey[38]; X[3] ^= wKey[39]; inverseLT(X); ib0(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[32]; X[1] ^= wKey[33]; X[2] ^= wKey[34]; X[3] ^= wKey[35]; inverseLT(X); ib7(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[28]; X[1] ^= wKey[29]; X[2] ^= wKey[30]; X[3] ^= wKey[31]; inverseLT(X); ib6(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[24]; X[1] ^= wKey[25]; X[2] ^= wKey[26]; X[3] ^= wKey[27]; inverseLT(X); ib5(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[20]; X[1] ^= wKey[21]; X[2] ^= wKey[22]; X[3] ^= wKey[23]; inverseLT(X); ib4(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[16]; X[1] ^= wKey[17]; X[2] ^= wKey[18]; X[3] ^= wKey[19]; inverseLT(X); ib3(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[12]; X[1] ^= wKey[13]; X[2] ^= wKey[14]; X[3] ^= wKey[15]; inverseLT(X); ib2(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[8]; X[1] ^= wKey[9]; X[2] ^= wKey[10]; X[3] ^= wKey[11]; inverseLT(X); ib1(X, X[0], X[1], X[2], X[3]); X[0] ^= wKey[4]; X[1] ^= wKey[5]; X[2] ^= wKey[6]; X[3] ^= wKey[7]; inverseLT(X); ib0(X, X[0], X[1], X[2], X[3]); Pack.intToBigEndian(X[3] ^ wKey[3], output, outOff); Pack.intToBigEndian(X[2] ^ wKey[2], output, outOff + 4); Pack.intToBigEndian(X[1] ^ wKey[1], output, outOff + 8); Pack.intToBigEndian(X[0] ^ wKey[0], output, outOff + 12); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy