All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.crypto.hqc.GF2PolynomialCalculator Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.pqc.crypto.hqc;

class GF2PolynomialCalculator
{
    private final int VEC_N_SIZE_64;
    private final int PARAM_N;
    private final long RED_MASK;

    GF2PolynomialCalculator(int vec_n_size_64, int param_n, long red_mask)
    {
        VEC_N_SIZE_64 = vec_n_size_64;
        PARAM_N = param_n;
        RED_MASK = red_mask;
    }

    protected void multLongs(long[] res, long[] a, long[] b)
    {
        long[] stack = new long[VEC_N_SIZE_64 << 3];
        long[] o_karat = new long[(VEC_N_SIZE_64 << 1) + 1];

        karatsuba(o_karat, 0, a, 0,  b, 0, VEC_N_SIZE_64, stack, 0);
        reduce(res, o_karat);
    }


    private void base_mul(long[] c, int cOffset, long a, long b)
    {
        long h = 0;
        long l = 0;
        long g;
        long[] u = new long[16];
        long[] mask_tab = new long[4];

        // Step 1
        u[0] = 0;
        u[1] = b & ((1L << (64 - 4)) - 1L);
        u[2] = u[1] << 1;
        u[3] = u[2] ^ u[1];
        u[4] = u[2] << 1;
        u[5] = u[4] ^ u[1];
        u[6] = u[3] << 1;
        u[7] = u[6] ^ u[1];
        u[8] = u[4] << 1;
        u[9] = u[8] ^ u[1];
        u[10] = u[5] << 1;
        u[11] = u[10] ^ u[1];
        u[12] = u[6] << 1;
        u[13] = u[12] ^ u[1];
        u[14] = u[7] << 1;
        u[15] = u[14] ^ u[1];

        g=0;
        long tmp1 = a & 15;

        for(int i = 0; i < 16; i++)
        {
            long tmp2 = tmp1 - i;
            g ^= (u[i] & -(1 - ((tmp2 | -tmp2) >>> 63)));
        }
        l = g;
        h = 0;

        // Step 2
        for (byte i = 4; i < 64; i += 4)
        {
            g = 0;
            long temp1 = (a >> i) & 15;
            for (int j = 0; j < 16; ++j)
            {
                long tmp2 = temp1 - j;
                g ^= (u[j] & -(1 - ((tmp2 | -tmp2) >>> 63)));
            }

            l ^= g << i;
            h ^= g >>> (64 - i);
        }

        // Step 3
        mask_tab [0] = - ((b >> 60) & 1);
        mask_tab [1] = - ((b >> 61) & 1);
        mask_tab [2] = - ((b >> 62) & 1);
        mask_tab [3] = - ((b >> 63) & 1);

        l ^= ((a << 60) & mask_tab[0]);
        h ^= ((a >>> 4) & mask_tab[0]);

        l ^= ((a << 61) & mask_tab[1]);
        h ^= ((a >>> 3) & mask_tab[1]);

        l ^= ((a << 62) & mask_tab[2]);
        h ^= ((a >>> 2) & mask_tab[2]);

        l ^= ((a << 63) & mask_tab[3]);
        h ^= ((a >>> 1) & mask_tab[3]);

        c[0 + cOffset] = l;
        c[1 + cOffset] = h;
    }




    private void karatsuba_add1(long[] alh, int alhOffset,
                        long[] blh, int blhOffset,
                        long[] a, int aOffset,
                        long[] b, int bOffset,
                        int size_l, int size_h)
    {
        for (int i = 0; i < size_h; i++)
        {
            alh[i + alhOffset] = a[i+ aOffset] ^ a[i + size_l + aOffset];
            blh[i + blhOffset] = b[i+ bOffset] ^ b[i + size_l + bOffset];
        }

        if (size_h < size_l)
        {
            alh[size_h + alhOffset] = a[size_h + aOffset];
            blh[size_h + blhOffset] = b[size_h + bOffset];
        }
    }



    private void karatsuba_add2(long[] o, int oOffset,
                        long[] tmp1, int tmp1Offset,
                        long[] tmp2, int tmp2Offset,
                        int size_l, int size_h)
    {
        for (int i = 0; i < (2 * size_l) ; i++)
        {
            tmp1[i + tmp1Offset] = tmp1[i + tmp1Offset] ^ o[i + oOffset];
        }

        for (int i = 0; i < ( 2 * size_h); i++)
        {
            tmp1[i + tmp1Offset] = tmp1[i + tmp1Offset] ^ tmp2[i + tmp2Offset];
        }

        for (int i = 0; i < (2 * size_l); i++)
        {
            o[i + size_l + oOffset] = o[i + size_l + oOffset] ^ tmp1[i + tmp1Offset];
        }
    }



    /**
     * Karatsuba multiplication of a and b, Implementation inspired from the NTL library.
     *
     * \param[out] o Polynomial
     * \param[in] a Polynomial
     * \param[in] b Polynomial
     * \param[in] size Length of polynomial
     * \param[in] stack Length of polynomial
     */
    private void karatsuba(long[] o, int oOffset, long[] a, int aOffset, long[] b, int bOffset, int size, long[] stack, int stackOffset)
    {
        int size_l, size_h;
        int ahOffset, bhOffset;

        if (size == 1)
        {
            base_mul(o, oOffset, a[0 + aOffset], b[0 + bOffset]);
            return;
        }

        size_h = size / 2;
        size_l = (size + 1) / 2;

        // alh = stack
        int alhOffset = stackOffset;
        // blh = stack with size_l offset
        int blhOffset = alhOffset + size_l;
        // tmp1 = stack with size_l * 2 offset;
        int tmp1Offset = blhOffset + size_l;
        // tmp2 = o with size_l * 2 offset;
        int tmp2Offset = oOffset + size_l*2;

        stackOffset += 4 * size_l;

        ahOffset = aOffset + size_l;
        bhOffset = bOffset + size_l;

        karatsuba(o, oOffset, a, aOffset, b, bOffset, size_l, stack, stackOffset);

        karatsuba(o, tmp2Offset, a, ahOffset, b, bhOffset, size_h, stack, stackOffset);

        karatsuba_add1(stack, alhOffset, stack, blhOffset, a, aOffset, b, bOffset, size_l, size_h);

        karatsuba(stack, tmp1Offset, stack, alhOffset, stack, blhOffset, size_l, stack, stackOffset);

        karatsuba_add2(o, oOffset, stack, tmp1Offset, o, tmp2Offset, size_l, size_h);
    }



    /**
     * @brief Compute o(x) = a(x) mod \f$ X^n - 1\f$
     *
     * This function computes the modular reduction of the polynomial a(x)
     *
     * @param[in] a Pointer to the polynomial a(x)
     * @param[out] o Pointer to the result
     */
    private void reduce(long[] o, long[] a)
    {
        int i;
        long r;
        long carry;

        for (i = 0; i < VEC_N_SIZE_64; i++)
        {
            r = a[i + VEC_N_SIZE_64 - 1] >>> (PARAM_N & 0x3F);
            carry = (long) (a[i + VEC_N_SIZE_64 ] << (64 - (PARAM_N & 0x3FL)));
            o[i] = a[i] ^ r ^ carry;
        }
        o[VEC_N_SIZE_64 - 1] &= RED_MASK;
    }



    static void addLongs(long[] res, long[] a, long[] b)
    {
        for (int i = 0; i < a.length; i++)
        {
            res[i] = a[i] ^ b[i];
        }
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy