All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.crypto.sphincsplus.HarakaSBase Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.pqc.crypto.sphincsplus;

import org.bouncycastle.util.Arrays;

/**
 * Haraka-512 v2, https://eprint.iacr.org/2016/098.pdf
 * 

* Haraka512-256 with reference to Python Reference Impl from: https://github.com/sphincs/sphincsplus *

*/ class HarakaSBase { protected long[][] haraka512_rc = new long[][]{ {0x24cf0ab9086f628bL, 0xbdd6eeecc83b8382L, 0xd96fb0306cdad0a7L, 0xaace082ac8f95f89L, 0x449d8e8870d7041fL, 0x49bb2f80b2b3e2f8L, 0x0569ae98d93bb258L, 0x23dc9691e7d6a4b1L}, {0xd8ba10ede0fe5b6eL, 0x7ecf7dbe424c7b8eL, 0x6ea9949c6df62a31L, 0xbf3f3c97ec9c313eL, 0x241d03a196a1861eL, 0xead3a51116e5a2eaL, 0x77d479fcad9574e3L, 0x18657a1af894b7a0L}, {0x10671e1a7f595522L, 0xd9a00ff675d28c7bL, 0x2f1edf0d2b9ba661L, 0xb8ff58b8e3de45f9L, 0xee29261da9865c02L, 0xd1532aa4b50bdf43L, 0x8bf858159b231bb1L, 0xdf17439d22d4f599L}, {0xdd4b2f0870b918c0L, 0x757a81f3b39b1bb6L, 0x7a5c556898952e3fL, 0x7dd70a16d915d87aL, 0x3ae61971982b8301L, 0xc3ab319e030412beL, 0x17c0033ac094a8cbL, 0x5a0630fc1a8dc4efL}, {0x17708988c1632f73L, 0xf92ddae090b44f4fL, 0x11ac0285c43aa314L, 0x509059941936b8baL, 0xd03e152fa2ce9b69L, 0x3fbcbcb63a32998bL, 0x6204696d692254f7L, 0x915542ed93ec59b4L}, {0xf4ed94aa8879236eL, 0xff6cb41cd38e03c0L, 0x069b38602368aeabL, 0x669495b820f0ddbaL, 0xf42013b1b8bf9e3dL, 0xcf935efe6439734dL, 0xbc1dcf42ca29e3f8L, 0x7e6d3ed29f78ad67L}, {0xf3b0f6837ffcddaaL, 0x3a76faef934ddf41L, 0xcec7ae583a9c8e35L, 0xe4dd18c68f0260afL, 0x2c0e5df1ad398eaaL, 0x478df5236ae22e8cL, 0xfb944c46fe865f39L, 0xaa48f82f028132baL}, {0x231b9ae2b76aca77L, 0x292a76a712db0b40L, 0x5850625dc8134491L, 0x73137dd469810fb5L, 0x8a12a6a202a474fdL, 0xd36fd9daa78bdb80L, 0xb34c5e733505706fL, 0xbaf1cdca818d9d96L}, {0x2e99781335e8c641L, 0xbddfe5cce47d560eL, 0xf74e9bf32e5e040cL, 0x1d7a709d65996be9L, 0x670df36a9cf66cddL, 0xd05ef84a176a2875L, 0x0f888e828cb1c44eL, 0x1a79e9c9727b052cL}, {0x83497348628d84deL, 0x2e9387d51f22a754L, 0xb000068da2f852d6L, 0x378c9e1190fd6fe5L, 0x870027c316de7293L, 0xe51a9d4462e047bbL, 0x90ecf7f8c6251195L, 0x655953bfbed90a9cL}, }; protected int[][] haraka256_rc = new int[10][8]; protected final byte[] buffer; protected int off; protected HarakaSBase() { this.buffer = new byte[64]; off = 0; } protected void reset() { off = 0; Arrays.clear(buffer); } private void brRangeDec32Le(byte[] input, int[] output, int inputPos) { int tmp; for (int i = 0; i < output.length; ++i) { tmp = inputPos + (i << 2); output[i] = (input[tmp] & 0xFF) | ((input[tmp + 1] << 8) & 0xFF00) | (((int)input[tmp + 2] << 16) & 0xFF0000) | ((int)input[tmp + 3] << 24); } } protected void interleaveConstant(long[] output, byte[] input, int startPos) { int[] tmp_32_constant = new int[16]; int i; brRangeDec32Le(input, tmp_32_constant, startPos); for (i = 0; i < 4; ++i) { brAesCt64InterleaveIn(output, i, tmp_32_constant, i << 2); } brAesCt64Ortho(output); } protected void interleaveConstant32(int[] output, byte[] input, int startPos) { for (int i = 0; i < 4; ++i) { output[i << 1] = brDec32Le(input, startPos + (i << 2)); output[(i << 1) + 1] = brDec32Le(input, startPos + (i << 2) + 16); } brAesCtOrtho(output); } private int brDec32Le(byte[] input, int startPos) { return (input[startPos] & 0xFF) | ((input[startPos + 1] << 8) & 0xFF00) | (((int)input[startPos + 2] << 16) & 0xFF0000) | ((int)input[startPos + 3] << 24); } protected void haraka512Perm(byte[] output) { int[] w = new int[16]; long[] q = new long[8]; long tmp_q; int i, j; brRangeDec32Le(buffer, w, 0); for (i = 0; i < 4; ++i) { brAesCt64InterleaveIn(q, i, w, i << 2); } brAesCt64Ortho(q); for (i = 0; i < 5; ++i) { for (j = 0; j < 2; ++j) { brAesCt64BitsliceSbox(q); shiftRows(q); mixColumns(q); addRoundKey(q, haraka512_rc[(i << 1) + j]); } for (j = 0; j < 8; j++) { tmp_q = q[j]; q[j] = (tmp_q & 0x0001000100010001L) << 5 | (tmp_q & 0x0002000200020002L) << 12 | (tmp_q & 0x0004000400040004L) >>> 1 | (tmp_q & 0x0008000800080008L) << 6 | (tmp_q & 0x0020002000200020L) << 9 | (tmp_q & 0x0040004000400040L) >>> 4 | (tmp_q & 0x0080008000800080L) << 3 | (tmp_q & 0x2100210021002100L) >>> 5 | (tmp_q & 0x0210021002100210L) << 2 | (tmp_q & 0x0800080008000800L) << 4 | (tmp_q & 0x1000100010001000L) >>> 12 | (tmp_q & 0x4000400040004000L) >>> 10 | (tmp_q & 0x8400840084008400L) >>> 3; } } brAesCt64Ortho(q); for (i = 0; i < 4; i++) { brAesCt64InterleaveOut(w, q, i); } for (i = 0; i < 16; ++i) { for (j = 0; j < 4; ++j) { output[(i << 2) + j] = (byte)((w[i] >>> (j << 3)) & 0xFF); } } } protected void haraka256Perm(byte[] output) { int[] q = new int[8]; int tmp_q, i, j; interleaveConstant32(q, buffer, 0); for (i = 0; i < 5; ++i) { for (j = 0; j < 2; ++j) { brAesCtBitsliceSbox(q); shiftRows32(q); mixColumns32(q); addRoundKey32(q, haraka256_rc[(i << 1) + j]); } for (j = 0; j < 8; j++) { tmp_q = q[j]; q[j] = (tmp_q & 0x81818181) | (tmp_q & 0x02020202) << 1 | (tmp_q & 0x04040404) << 2 | (tmp_q & 0x08080808) << 3 | (tmp_q & 0x10101010) >>> 3 | (tmp_q & 0x20202020) >>> 2 | (tmp_q & 0x40404040) >>> 1; } } brAesCtOrtho(q); for (i = 0; i < 4; i++) { brEnc32Le(output, q[i << 1], i << 2); brEnc32Le(output, q[(i << 1) + 1], (i << 2) + 16); } } private void brEnc32Le(byte[] dst, int x, int startPos) { for (int i = 0; i < 4; ++i) { dst[startPos + i] = (byte)(x >> (i << 3)); } } private void brAesCt64InterleaveIn(long[] q, int qPos, int[] w, int startPos) { long x0, x1, x2, x3; x0 = w[startPos] & 0x00000000FFFFFFFFL; x1 = w[startPos + 1] & 0x00000000FFFFFFFFL; x2 = w[startPos + 2] & 0x00000000FFFFFFFFL; x3 = w[startPos + 3] & 0x00000000FFFFFFFFL; x0 |= x0 << 16; x1 |= x1 << 16; x2 |= x2 << 16; x3 |= x3 << 16; x0 &= 0x0000FFFF0000FFFFL; x1 &= 0x0000FFFF0000FFFFL; x2 &= 0x0000FFFF0000FFFFL; x3 &= 0x0000FFFF0000FFFFL; x0 |= x0 << 8; x1 |= x1 << 8; x2 |= x2 << 8; x3 |= x3 << 8; x0 &= 0x00FF00FF00FF00FFL; x1 &= 0x00FF00FF00FF00FFL; x2 &= 0x00FF00FF00FF00FFL; x3 &= 0x00FF00FF00FF00FFL; q[qPos] = x0 | (x2 << 8); q[qPos + 4] = x1 | (x3 << 8); } private static void brAesCtBitsliceSbox(int[] q) { /* * This S-box implementation is a straightforward translation of * the circuit described by Boyar and Peralta in "A new * combinational logic minimization technique with applications * to cryptology" (https://eprint.iacr.org/2009/191.pdf). * * Note that variables x* (input) and s* (output) are numbered * in "reverse" order (x0 is the high bit, x7 is the low bit). */ int x0, x1, x2, x3, x4, x5, x6, x7; int y1, y2, y3, y4, y5, y6, y7, y8, y9; int y10, y11, y12, y13, y14, y15, y16, y17, y18, y19; int y20, y21; int z0, z1, z2, z3, z4, z5, z6, z7, z8, z9; int z10, z11, z12, z13, z14, z15, z16, z17; int t0, t1, t2, t3, t4, t5, t6, t7, t8, t9; int t10, t11, t12, t13, t14, t15, t16, t17, t18, t19; int t20, t21, t22, t23, t24, t25, t26, t27, t28, t29; int t30, t31, t32, t33, t34, t35, t36, t37, t38, t39; int t40, t41, t42, t43, t44, t45, t46, t47, t48, t49; int t50, t51, t52, t53, t54, t55, t56, t57, t58, t59; int t60, t61, t62, t63, t64, t65, t66, t67; int s0, s1, s2, s3, s4, s5, s6, s7; x0 = q[7]; x1 = q[6]; x2 = q[5]; x3 = q[4]; x4 = q[3]; x5 = q[2]; x6 = q[1]; x7 = q[0]; /* * Top linear transformation. */ y14 = x3 ^ x5; y13 = x0 ^ x6; y9 = x0 ^ x3; y8 = x0 ^ x5; t0 = x1 ^ x2; y1 = t0 ^ x7; y4 = y1 ^ x3; y12 = y13 ^ y14; y2 = y1 ^ x0; y5 = y1 ^ x6; y3 = y5 ^ y8; t1 = x4 ^ y12; y15 = t1 ^ x5; y20 = t1 ^ x1; y6 = y15 ^ x7; y10 = y15 ^ t0; y11 = y20 ^ y9; y7 = x7 ^ y11; y17 = y10 ^ y11; y19 = y10 ^ y8; y16 = t0 ^ y11; y21 = y13 ^ y16; y18 = x0 ^ y16; /* * Non-linear section. */ t2 = y12 & y15; t3 = y3 & y6; t4 = t3 ^ t2; t5 = y4 & x7; t6 = t5 ^ t2; t7 = y13 & y16; t8 = y5 & y1; t9 = t8 ^ t7; t10 = y2 & y7; t11 = t10 ^ t7; t12 = y9 & y11; t13 = y14 & y17; t14 = t13 ^ t12; t15 = y8 & y10; t16 = t15 ^ t12; t17 = t4 ^ t14; t18 = t6 ^ t16; t19 = t9 ^ t14; t20 = t11 ^ t16; t21 = t17 ^ y20; t22 = t18 ^ y19; t23 = t19 ^ y21; t24 = t20 ^ y18; t25 = t21 ^ t22; t26 = t21 & t23; t27 = t24 ^ t26; t28 = t25 & t27; t29 = t28 ^ t22; t30 = t23 ^ t24; t31 = t22 ^ t26; t32 = t31 & t30; t33 = t32 ^ t24; t34 = t23 ^ t33; t35 = t27 ^ t33; t36 = t24 & t35; t37 = t36 ^ t34; t38 = t27 ^ t36; t39 = t29 & t38; t40 = t25 ^ t39; t41 = t40 ^ t37; t42 = t29 ^ t33; t43 = t29 ^ t40; t44 = t33 ^ t37; t45 = t42 ^ t41; z0 = t44 & y15; z1 = t37 & y6; z2 = t33 & x7; z3 = t43 & y16; z4 = t40 & y1; z5 = t29 & y7; z6 = t42 & y11; z7 = t45 & y17; z8 = t41 & y10; z9 = t44 & y12; z10 = t37 & y3; z11 = t33 & y4; z12 = t43 & y13; z13 = t40 & y5; z14 = t29 & y2; z15 = t42 & y9; z16 = t45 & y14; z17 = t41 & y8; /* * Bottom linear transformation. */ t46 = z15 ^ z16; t47 = z10 ^ z11; t48 = z5 ^ z13; t49 = z9 ^ z10; t50 = z2 ^ z12; t51 = z2 ^ z5; t52 = z7 ^ z8; t53 = z0 ^ z3; t54 = z6 ^ z7; t55 = z16 ^ z17; t56 = z12 ^ t48; t57 = t50 ^ t53; t58 = z4 ^ t46; t59 = z3 ^ t54; t60 = t46 ^ t57; t61 = z14 ^ t57; t62 = t52 ^ t58; t63 = t49 ^ t58; t64 = z4 ^ t59; t65 = t61 ^ t62; t66 = z1 ^ t63; s0 = t59 ^ t63; s6 = t56 ^ ~t62; s7 = t48 ^ ~t60; t67 = t64 ^ t65; s3 = t53 ^ t66; s4 = t51 ^ t66; s5 = t47 ^ t65; s1 = t64 ^ ~s3; s2 = t55 ^ ~t67; q[7] = s0; q[6] = s1; q[5] = s2; q[4] = s3; q[3] = s4; q[2] = s5; q[1] = s6; q[0] = s7; } private void shiftRows32(int[] q) { int x; for (int i = 0; i < 8; i++) { x = q[i]; q[i] = (x & 0x000000FF) | ((x & 0x0000FC00) >>> 2) | ((x & 0x00000300) << 6) | ((x & 0x00F00000) >>> 4) | ((x & 0x000F0000) << 4) | ((x & 0xC0000000) >>> 6) | ((x & 0x3F000000) << 2); } } private void mixColumns32(int[] q) { int q0, q1, q2, q3, q4, q5, q6, q7; int r0, r1, r2, r3, r4, r5, r6, r7; q0 = q[0]; q1 = q[1]; q2 = q[2]; q3 = q[3]; q4 = q[4]; q5 = q[5]; q6 = q[6]; q7 = q[7]; r0 = (q0 >>> 8) | (q0 << 24); r1 = (q1 >>> 8) | (q1 << 24); r2 = (q2 >>> 8) | (q2 << 24); r3 = (q3 >>> 8) | (q3 << 24); r4 = (q4 >>> 8) | (q4 << 24); r5 = (q5 >>> 8) | (q5 << 24); r6 = (q6 >>> 8) | (q6 << 24); r7 = (q7 >>> 8) | (q7 << 24); q[0] = q7 ^ r7 ^ r0 ^ rotr16(q0 ^ r0); q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr16(q1 ^ r1); q[2] = q1 ^ r1 ^ r2 ^ rotr16(q2 ^ r2); q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr16(q3 ^ r3); q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr16(q4 ^ r4); q[5] = q4 ^ r4 ^ r5 ^ rotr16(q5 ^ r5); q[6] = q5 ^ r5 ^ r6 ^ rotr16(q6 ^ r6); q[7] = q6 ^ r6 ^ r7 ^ rotr16(q7 ^ r7); } private void addRoundKey32(int[] q, int[] sk) { q[0] ^= sk[0]; q[1] ^= sk[1]; q[2] ^= sk[2]; q[3] ^= sk[3]; q[4] ^= sk[4]; q[5] ^= sk[5]; q[6] ^= sk[6]; q[7] ^= sk[7]; } private int rotr16(int x) { return (x << 16) | (x >>> 16); } private void brAesCt64Ortho(long[] q) { Swapn(q, 1, 0, 1); Swapn(q, 1, 2, 3); Swapn(q, 1, 4, 5); Swapn(q, 1, 6, 7); Swapn(q, 2, 0, 2); Swapn(q, 2, 1, 3); Swapn(q, 2, 4, 6); Swapn(q, 2, 5, 7); Swapn(q, 4, 0, 4); Swapn(q, 4, 1, 5); Swapn(q, 4, 2, 6); Swapn(q, 4, 3, 7); } private void brAesCtOrtho(int[] q) { Swapn32(q, 1, 0, 1); Swapn32(q, 1, 2, 3); Swapn32(q, 1, 4, 5); Swapn32(q, 1, 6, 7); Swapn32(q, 2, 0, 2); Swapn32(q, 2, 1, 3); Swapn32(q, 2, 4, 6); Swapn32(q, 2, 5, 7); Swapn32(q, 4, 0, 4); Swapn32(q, 4, 1, 5); Swapn32(q, 4, 2, 6); Swapn32(q, 4, 3, 7); } private void Swapn32(int[] q, int s, int pos1, int pos2) { int cl = 0, ch = 0; switch (s) { case 1: cl = 0x55555555; ch = 0xAAAAAAAA; break; case 2: cl = 0x33333333; ch = 0xCCCCCCCC; break; case 4: cl = 0x0F0F0F0F; ch = 0xF0F0F0F0; break; } int a = q[pos1], b = q[pos2]; q[pos1] = (a & cl) | ((b & cl) << s); q[pos2] = ((a & ch) >>> s) | (b & ch); } private void Swapn(long[] q, int s, int pos1, int pos2) { long cl = 0, ch = 0; switch (s) { case 1: cl = 0x5555555555555555L; ch = 0xAAAAAAAAAAAAAAAAL; break; case 2: cl = 0x3333333333333333L; ch = 0xCCCCCCCCCCCCCCCCL; break; case 4: cl = 0x0F0F0F0F0F0F0F0FL; ch = 0xF0F0F0F0F0F0F0F0L; break; default: return; } long a = q[pos1], b = q[pos2]; q[pos1] = (a & cl) | ((b & cl) << s); q[pos2] = ((a & ch) >>> s) | (b & ch); } private void brAesCt64BitsliceSbox(long[] q) { /* * This S-box implementation is a straightforward translation of * the circuit described by Boyar and Peralta in "A new * combinational logic minimization technique with applications * to cryptology" (https://eprint.iacr.org/2009/191.pdf). * * Note that variables x* (input) and s* (output) are numbered * in "reverse" order (x0 is the high bit, x7 is the low bit). */ long x0, x1, x2, x3, x4, x5, x6, x7; long y1, y2, y3, y4, y5, y6, y7, y8, y9; long y10, y11, y12, y13, y14, y15, y16, y17, y18, y19; long y20, y21; long z0, z1, z2, z3, z4, z5, z6, z7, z8, z9; long z10, z11, z12, z13, z14, z15, z16, z17; long t0, t1, t2, t3, t4, t5, t6, t7, t8, t9; long t10, t11, t12, t13, t14, t15, t16, t17, t18, t19; long t20, t21, t22, t23, t24, t25, t26, t27, t28, t29; long t30, t31, t32, t33, t34, t35, t36, t37, t38, t39; long t40, t41, t42, t43, t44, t45, t46, t47, t48, t49; long t50, t51, t52, t53, t54, t55, t56, t57, t58, t59; long t60, t61, t62, t63, t64, t65, t66, t67; long s0, s1, s2, s3, s4, s5, s6, s7; x0 = q[7]; x1 = q[6]; x2 = q[5]; x3 = q[4]; x4 = q[3]; x5 = q[2]; x6 = q[1]; x7 = q[0]; /* * Top linear transformation. */ y14 = x3 ^ x5; y13 = x0 ^ x6; y9 = x0 ^ x3; y8 = x0 ^ x5; t0 = x1 ^ x2; y1 = t0 ^ x7; y4 = y1 ^ x3; y12 = y13 ^ y14; y2 = y1 ^ x0; y5 = y1 ^ x6; y3 = y5 ^ y8; t1 = x4 ^ y12; y15 = t1 ^ x5; y20 = t1 ^ x1; y6 = y15 ^ x7; y10 = y15 ^ t0; y11 = y20 ^ y9; y7 = x7 ^ y11; y17 = y10 ^ y11; y19 = y10 ^ y8; y16 = t0 ^ y11; y21 = y13 ^ y16; y18 = x0 ^ y16; /* * Non-linear section. */ t2 = y12 & y15; t3 = y3 & y6; t4 = t3 ^ t2; t5 = y4 & x7; t6 = t5 ^ t2; t7 = y13 & y16; t8 = y5 & y1; t9 = t8 ^ t7; t10 = y2 & y7; t11 = t10 ^ t7; t12 = y9 & y11; t13 = y14 & y17; t14 = t13 ^ t12; t15 = y8 & y10; t16 = t15 ^ t12; t17 = t4 ^ t14; t18 = t6 ^ t16; t19 = t9 ^ t14; t20 = t11 ^ t16; t21 = t17 ^ y20; t22 = t18 ^ y19; t23 = t19 ^ y21; t24 = t20 ^ y18; t25 = t21 ^ t22; t26 = t21 & t23; t27 = t24 ^ t26; t28 = t25 & t27; t29 = t28 ^ t22; t30 = t23 ^ t24; t31 = t22 ^ t26; t32 = t31 & t30; t33 = t32 ^ t24; t34 = t23 ^ t33; t35 = t27 ^ t33; t36 = t24 & t35; t37 = t36 ^ t34; t38 = t27 ^ t36; t39 = t29 & t38; t40 = t25 ^ t39; t41 = t40 ^ t37; t42 = t29 ^ t33; t43 = t29 ^ t40; t44 = t33 ^ t37; t45 = t42 ^ t41; z0 = t44 & y15; z1 = t37 & y6; z2 = t33 & x7; z3 = t43 & y16; z4 = t40 & y1; z5 = t29 & y7; z6 = t42 & y11; z7 = t45 & y17; z8 = t41 & y10; z9 = t44 & y12; z10 = t37 & y3; z11 = t33 & y4; z12 = t43 & y13; z13 = t40 & y5; z14 = t29 & y2; z15 = t42 & y9; z16 = t45 & y14; z17 = t41 & y8; /* * Bottom linear transformation. */ t46 = z15 ^ z16; t47 = z10 ^ z11; t48 = z5 ^ z13; t49 = z9 ^ z10; t50 = z2 ^ z12; t51 = z2 ^ z5; t52 = z7 ^ z8; t53 = z0 ^ z3; t54 = z6 ^ z7; t55 = z16 ^ z17; t56 = z12 ^ t48; t57 = t50 ^ t53; t58 = z4 ^ t46; t59 = z3 ^ t54; t60 = t46 ^ t57; t61 = z14 ^ t57; t62 = t52 ^ t58; t63 = t49 ^ t58; t64 = z4 ^ t59; t65 = t61 ^ t62; t66 = z1 ^ t63; s0 = t59 ^ t63; s6 = t56 ^ ~t62; s7 = t48 ^ ~t60; t67 = t64 ^ t65; s3 = t53 ^ t66; s4 = t51 ^ t66; s5 = t47 ^ t65; s1 = t64 ^ ~s3; s2 = t55 ^ ~t67; q[7] = s0; q[6] = s1; q[5] = s2; q[4] = s3; q[3] = s4; q[2] = s5; q[1] = s6; q[0] = s7; } private void shiftRows(long[] q) { long x; for (int i = 0; i < q.length; i++) { x = q[i]; q[i] = (x & 0x000000000000FFFFL) | ((x & 0x00000000FFF00000L) >>> 4) | ((x & 0x00000000000F0000L) << 12) | ((x & 0x0000FF0000000000L) >>> 8) | ((x & 0x000000FF00000000L) << 8) | ((x & 0xF000000000000000L) >>> 12) | ((x & 0x0FFF000000000000L) << 4); } } private void mixColumns(long[] q) { long q0, q1, q2, q3, q4, q5, q6, q7; long r0, r1, r2, r3, r4, r5, r6, r7; q0 = q[0]; q1 = q[1]; q2 = q[2]; q3 = q[3]; q4 = q[4]; q5 = q[5]; q6 = q[6]; q7 = q[7]; r0 = (q0 >>> 16) | (q0 << 48); r1 = (q1 >>> 16) | (q1 << 48); r2 = (q2 >>> 16) | (q2 << 48); r3 = (q3 >>> 16) | (q3 << 48); r4 = (q4 >>> 16) | (q4 << 48); r5 = (q5 >>> 16) | (q5 << 48); r6 = (q6 >>> 16) | (q6 << 48); r7 = (q7 >>> 16) | (q7 << 48); q[0] = q7 ^ r7 ^ r0 ^ rotr32(q0 ^ r0); q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr32(q1 ^ r1); q[2] = q1 ^ r1 ^ r2 ^ rotr32(q2 ^ r2); q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr32(q3 ^ r3); q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr32(q4 ^ r4); q[5] = q4 ^ r4 ^ r5 ^ rotr32(q5 ^ r5); q[6] = q5 ^ r5 ^ r6 ^ rotr32(q6 ^ r6); q[7] = q6 ^ r6 ^ r7 ^ rotr32(q7 ^ r7); } private long rotr32(long x) { return (x << 32) | (x >>> 32); } private void addRoundKey(long[] q, long[] sk) { q[0] ^= sk[0]; q[1] ^= sk[1]; q[2] ^= sk[2]; q[3] ^= sk[3]; q[4] ^= sk[4]; q[5] ^= sk[5]; q[6] ^= sk[6]; q[7] ^= sk[7]; } private void brAesCt64InterleaveOut(int[] w, long[] q, int pos) { long x0, x1, x2, x3; x0 = q[pos] & 0x00FF00FF00FF00FFL; x1 = q[pos + 4] & 0x00FF00FF00FF00FFL; x2 = (q[pos] >>> 8) & 0x00FF00FF00FF00FFL; x3 = (q[pos + 4] >>> 8) & 0x00FF00FF00FF00FFL; x0 |= (x0 >>> 8); x1 |= (x1 >>> 8); x2 |= (x2 >>> 8); x3 |= (x3 >>> 8); x0 &= 0x0000FFFF0000FFFFL; x1 &= 0x0000FFFF0000FFFFL; x2 &= 0x0000FFFF0000FFFFL; x3 &= 0x0000FFFF0000FFFFL; pos <<= 2; w[pos] = (int)(x0 | (x0 >>> 16)); w[pos + 1] = (int)(x1 | (x1 >>> 16)); w[pos + 2] = (int)(x2 | (x2 >>> 16)); w[pos + 3] = (int)(x3 | (x3 >>> 16)); } protected static void xor(byte[] x, int xOff, byte[] y, int yOff, byte[] z, int zOff, int zLen) { for (int i = 0; i < zLen; i++) { z[zOff + i] = (byte)(x[xOff + i] ^ y[yOff + i]); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy