All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.math.ntru.Polynomial Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.pqc.math.ntru;

import org.bouncycastle.pqc.math.ntru.parameters.NTRUParameterSet;

/**
 * Polynomial for {@link org.bouncycastle.pqc.crypto.ntru}.
 */
public abstract class Polynomial
{
    /**
     * An array of coefficients
     */
    // TODO: maybe the maths library needs to move.
    public short[] coeffs;
    
    protected NTRUParameterSet params;

    public Polynomial(NTRUParameterSet params)
    {
        this.coeffs = new short[params.n()];
        this.params = params;
    }

    /**
     * @param x
     * @param y
     * @return -1 if x<0 and y<0; otherwise return 0
     * 

* theory: if x and y are negative, MSB is 1. shifting right by 15 bits will produce 0xffff */ // defined in poly_r2_inv.c and poly_s3_inv.c. both functions are identical static short bothNegativeMask(short x, short y) { return (short)((x & y) >>> 15); } // defined in poly_mod.c static short mod3(short a) { return (short)((a & 0xffff) % 3); } // defined in poly_s3_inv.c static byte mod3(byte a) { return (byte)((a & 0xff) % 3); } // defined in poly.h static int modQ(int x, int q) { return x % q; } // Defined in poly_mod.c public void mod3PhiN() { int n = this.params.n(); for (int i = 0; i < n; i++) { this.coeffs[i] = mod3((short)(this.coeffs[i] + 2 * this.coeffs[n - 1])); } } // Defined in poly_mod.c public void modQPhiN() { int n = this.params.n(); for (int i = 0; i < n; i++) { this.coeffs[i] = (short)(this.coeffs[i] - this.coeffs[n - 1]); } } /** * Pack Sq polynomial as a byte array * * @param len array length of packed polynomial * @return * @see NTRU specification section 1.8.5 */ // defined in packq.c public abstract byte[] sqToBytes(int len); /** * Unpack a Sq polynomial * * @param a byte array of packed polynomial * @see NTRU specification section 1.8.6 */ // defined in packq.c public abstract void sqFromBytes(byte[] a); /** * Pack a Rq0 polynomial as a byte array * * @param len array length of packed polynomial * @return * @see NTRU specification section 1.8.3 */ // defined in packq.c public byte[] rqSumZeroToBytes(int len) { return this.sqToBytes(len); } /** * Unpack a Rq0 polynomial * * @param a byte array of packed polynomial * @see NTRU specification section 1.8.4 */ // defined in packq.c public void rqSumZeroFromBytes(byte[] a) { int n = this.coeffs.length; this.sqFromBytes(a); this.coeffs[n - 1] = 0; for (int i = 0; i < params.packDegree(); i++) { this.coeffs[n - 1] -= this.coeffs[i]; } } /** * Pack an S3 polynomial as a byte array * * @param messageSize array length of packed polynomial * @return * @see NTRU specification section 1.8.7 */ // defined in pack3.c public byte[] s3ToBytes(int messageSize) { byte[] msg = new byte[messageSize]; byte c; for (int i = 0; i < params.packDegree() / 5; i++) { c = (byte)(this.coeffs[5 * i + 4] & 255); c = (byte)(3 * c + this.coeffs[5 * i + 3] & 255); c = (byte)(3 * c + this.coeffs[5 * i + 2] & 255); c = (byte)(3 * c + this.coeffs[5 * i + 1] & 255); c = (byte)(3 * c + this.coeffs[5 * i + 0] & 255); msg[i] = c; } // if 5 does not divide NTRU_N-1 if (params.packDegree() > (params.packDegree() / 5) * 5) { int i = params.packDegree() / 5; c = 0; for (int j = params.packDegree() - (5 * i) - 1; j >= 0; j--) { c = (byte)(3 * c + this.coeffs[5 * i + j] & 255); } msg[i] = c; } return msg; } /** * Unpack a S3 polynomial * * @param msg byte array of packed polynomial * @see NTRU specification section 1.8.8 */ // defined in pack3.c public void s3FromBytes(byte[] msg) { int n = this.coeffs.length; byte c; for (int i = 0; i < params.packDegree() / 5; i++) { c = msg[i]; this.coeffs[5 * i + 0] = c; this.coeffs[5 * i + 1] = (short)((c & 0xff) * 171 >>> 9); // this is division by 3 this.coeffs[5 * i + 2] = (short)((c & 0xff) * 57 >>> 9); // division by 3^2 this.coeffs[5 * i + 3] = (short)((c & 0xff) * 19 >>> 9); // division by 3^3 this.coeffs[5 * i + 4] = (short)((c & 0xff) * 203 >>> 14); // etc. } if (params.packDegree() > (params.packDegree() / 5) * 5) { int i = params.packDegree() / 5; c = msg[i]; for (int j = 0; (5 * i + j) < params.packDegree(); j++) { this.coeffs[5 * i + j] = c; c = (byte)((c & 0xff) * 171 >> 9); } } this.coeffs[n - 1] = 0; this.mod3PhiN(); } // defined in poly.c public void sqMul(Polynomial a, Polynomial b) { this.rqMul(a, b); this.modQPhiN(); } // defined in poly_rq_mul.c public void rqMul(Polynomial a, Polynomial b) { int n = this.coeffs.length; int k, i; for (k = 0; k < n; k++) { this.coeffs[k] = 0; for (i = 1; i < n - k; i++) { this.coeffs[k] += a.coeffs[k + i] * b.coeffs[n - i]; } for (i = 0; i < k + 1; i++) { this.coeffs[k] += a.coeffs[k - i] * b.coeffs[i]; } } } // defined in poly.c public void s3Mul(Polynomial a, Polynomial b) { this.rqMul(a, b); this.mod3PhiN(); } /** * @param a * @see NTRU specification section 1.9.3 */ // defined in poly_lift.c public abstract void lift(Polynomial a); // defined in poly_mod.c public void rqToS3(Polynomial a) { int n = this.coeffs.length; short flag; for (int i = 0; i < n; i++) { this.coeffs[i] = (short)modQ(a.coeffs[i] & 0xffff, params.q()); flag = (short)(this.coeffs[i] >>> params.logQ() - 1); this.coeffs[i] += flag << (1 - (params.logQ() & 1)); } this.mod3PhiN(); } // defined in poly_r2_inv.c public void r2Inv(Polynomial a) { Polynomial f = this.params.createPolynomial(); Polynomial g = this.params.createPolynomial(); Polynomial v = this.params.createPolynomial(); Polynomial w = this.params.createPolynomial(); this.r2Inv(a, f, g, v, w); } // defined in poly.c public void rqInv(Polynomial a) { Polynomial ai2 = this.params.createPolynomial(); Polynomial b = this.params.createPolynomial(); Polynomial c = this.params.createPolynomial(); Polynomial s = this.params.createPolynomial(); this.rqInv(a, ai2, b, c, s); } // defined in poly_s3_inv.c public void s3Inv(Polynomial a) { Polynomial f = this.params.createPolynomial(); Polynomial g = this.params.createPolynomial(); Polynomial v = this.params.createPolynomial(); Polynomial w = this.params.createPolynomial(); this.s3Inv(a, f, g, v, w); } void r2Inv(Polynomial a, Polynomial f, Polynomial g, Polynomial v, Polynomial w) { int n = this.coeffs.length; int i, loop; short delta, sign, swap, t; w.coeffs[0] = 1; for (i = 0; i < n; ++i) { f.coeffs[i] = 1; } for (i = 0; i < n - 1; ++i) { g.coeffs[n - 2 - i] = (short)((a.coeffs[i] ^ a.coeffs[n - 1]) & 1); } g.coeffs[n - 1] = 0; delta = 1; for (loop = 0; loop < 2 * (n - 1) - 1; ++loop) { for (i = n - 1; i > 0; --i) { v.coeffs[i] = v.coeffs[i - 1]; } v.coeffs[0] = 0; sign = (short)(g.coeffs[0] & f.coeffs[0]); swap = bothNegativeMask((short)-delta, (short)-g.coeffs[0]); delta ^= swap & (delta ^ -delta); delta++; for (i = 0; i < n; ++i) { t = (short)(swap & (f.coeffs[i] ^ g.coeffs[i])); f.coeffs[i] ^= t; g.coeffs[i] ^= t; t = (short)(swap & (v.coeffs[i] ^ w.coeffs[i])); v.coeffs[i] ^= t; w.coeffs[i] ^= t; } for (i = 0; i < n; ++i) { g.coeffs[i] = (short)(g.coeffs[i] ^ (sign & f.coeffs[i])); } for (i = 0; i < n; ++i) { w.coeffs[i] = (short)(w.coeffs[i] ^ (sign & v.coeffs[i])); } for (i = 0; i < n - 1; ++i) { g.coeffs[i] = g.coeffs[i + 1]; } g.coeffs[n - 1] = 0; } for (i = 0; i < n - 1; ++i) { this.coeffs[i] = v.coeffs[n - 2 - i]; } this.coeffs[n - 1] = 0; } void rqInv(Polynomial a, Polynomial ai2, Polynomial b, Polynomial c, Polynomial s) { ai2.r2Inv(a); this.r2InvToRqInv(ai2, a, b, c, s); } // defined in poly.c private void r2InvToRqInv(Polynomial ai, Polynomial a, Polynomial b, Polynomial c, Polynomial s) { int n = this.coeffs.length; int i; for (i = 0; i < n; i++) { b.coeffs[i] = (short)-a.coeffs[i]; } for (i = 0; i < n; i++) { this.coeffs[i] = ai.coeffs[i]; } c.rqMul(this, b); c.coeffs[0] += 2; s.rqMul(c, this); c.rqMul(s, b); c.coeffs[0] += 2; this.rqMul(c, s); c.rqMul(this, b); c.coeffs[0] += 2; s.rqMul(c, this); c.rqMul(s, b); c.coeffs[0] += 2; this.rqMul(c, s); } void s3Inv(Polynomial a, Polynomial f, Polynomial g, Polynomial v, Polynomial w) { int n = this.coeffs.length; int i, loop; short delta, sign, swap, t; w.coeffs[0] = 1; for (i = 0; i < n; ++i) { f.coeffs[i] = 1; } for (i = 0; i < n - 1; ++i) { g.coeffs[n - 2 - i] = mod3((short)((a.coeffs[i] & 3) + 2 * (a.coeffs[n - 1] & 3))); } g.coeffs[n - 1] = 0; delta = 1; for (loop = 0; loop < 2 * (n - 1) - 1; ++loop) { for (i = n - 1; i > 0; --i) { v.coeffs[i] = v.coeffs[i - 1]; } v.coeffs[0] = 0; sign = mod3((byte)(2 * g.coeffs[0] * f.coeffs[0])); swap = bothNegativeMask((short)-delta, (short)-g.coeffs[0]); delta ^= swap & (delta ^ -delta); delta++; for (i = 0; i < n; ++i) { t = (short)(swap & (f.coeffs[i] ^ g.coeffs[i])); f.coeffs[i] ^= t; g.coeffs[i] ^= t; t = (short)(swap & (v.coeffs[i] ^ w.coeffs[i])); v.coeffs[i] ^= t; w.coeffs[i] ^= t; } for (i = 0; i < n; ++i) { g.coeffs[i] = mod3((byte)(g.coeffs[i] + sign * f.coeffs[i])); } for (i = 0; i < n; ++i) { w.coeffs[i] = mod3((byte)(w.coeffs[i] + sign * v.coeffs[i])); } for (i = 0; i < n - 1; ++i) { g.coeffs[i] = g.coeffs[i + 1]; } g.coeffs[n - 1] = 0; } sign = f.coeffs[0]; for (i = 0; i < n - 1; ++i) { this.coeffs[i] = mod3((byte)(sign * v.coeffs[n - 2 - i])); } this.coeffs[n - 1] = 0; } public void z3ToZq() { int n = this.coeffs.length; for (int i = 0; i < n; i++) { this.coeffs[i] = (short)(this.coeffs[i] | ((-(this.coeffs[i] >>> 1)) & (params.q() - 1))); } } public void trinaryZqToZ3() { int n = this.coeffs.length; for (int i = 0; i < n; i++) { this.coeffs[i] = (short)modQ(this.coeffs[i] & 0xffff, params.q()); this.coeffs[i] = (short)(3 & (this.coeffs[i] ^ (this.coeffs[i] >>> (params.logQ() - 1)))); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy