All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.ECCurve Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.6.

There is a newer version: 1.46
Show newest version
package org.bouncycastle.math.ec;

import java.math.BigInteger;
import java.util.Random;

/**
 * base class for an elliptic curve
 */
public abstract class ECCurve
{
    ECFieldElement a, b;

    public abstract int getFieldSize();

    public abstract ECFieldElement fromBigInteger(BigInteger x);

    public abstract ECPoint createPoint(BigInteger x, BigInteger y, boolean withCompression);

    public abstract ECPoint decodePoint(byte[] encoded);

    public abstract ECPoint getInfinity();

    public ECFieldElement getA()
    {
        return a;
    }

    public ECFieldElement getB()
    {
        return b;
    }

    /**
     * Elliptic curve over Fp
     */
    public static class Fp extends ECCurve
    {
        BigInteger q;
        ECPoint.Fp infinity;

        public Fp(BigInteger q, BigInteger a, BigInteger b)
        {
            this.q = q;
            this.a = fromBigInteger(a);
            this.b = fromBigInteger(b);
            this.infinity = new ECPoint.Fp(this, null, null);
        }

        public BigInteger getQ()
        {
            return q;
        }

        public int getFieldSize()
        {
            return q.bitLength();
        }

        public ECFieldElement fromBigInteger(BigInteger x)
        {
            return new ECFieldElement.Fp(this.q, x);
        }

        public ECPoint createPoint(BigInteger x, BigInteger y, boolean withCompression)
        {
            return new ECPoint.Fp(this, fromBigInteger(x), fromBigInteger(y), withCompression);
        }

        /**
         * Decode a point on this curve from its ASN.1 encoding. The different
         * encodings are taken account of, including point compression for
         * Fp (X9.62 s 4.2.1 pg 17).
         * @return The decoded point.
         */
        public ECPoint decodePoint(byte[] encoded)
        {
            ECPoint p = null;

            switch (encoded[0])
            {
                // infinity
            case 0x00:
                p = getInfinity();
                break;
                // compressed
            case 0x02:
            case 0x03:
                int ytilde = encoded[0] & 1;
                byte[]  i = new byte[encoded.length - 1];

                System.arraycopy(encoded, 1, i, 0, i.length);

                ECFieldElement x = new ECFieldElement.Fp(this.q, new BigInteger(1, i));
                ECFieldElement alpha = x.multiply(x.square().add(a)).add(b);
                ECFieldElement beta = alpha.sqrt();

                //
                // if we can't find a sqrt we haven't got a point on the
                // curve - run!
                //
                if (beta == null)
                {
                    throw new RuntimeException("Invalid point compression");
                }

                int bit0 = (beta.toBigInteger().testBit(0) ? 1 : 0);

                if (bit0 == ytilde)
                {
                    p = new ECPoint.Fp(this, x, beta, true);
                }
                else
                {
                    p = new ECPoint.Fp(this, x,
                        new ECFieldElement.Fp(this.q, q.subtract(beta.toBigInteger())), true);
                }
                break;
                // uncompressed
            case 0x04:
                // hybrid
            case 0x06:
            case 0x07:
                byte[]  xEnc = new byte[(encoded.length - 1) / 2];
                byte[]  yEnc = new byte[(encoded.length - 1) / 2];

                System.arraycopy(encoded, 1, xEnc, 0, xEnc.length);
                System.arraycopy(encoded, xEnc.length + 1, yEnc, 0, yEnc.length);

                p = new ECPoint.Fp(this,
                        new ECFieldElement.Fp(this.q, new BigInteger(1, xEnc)),
                        new ECFieldElement.Fp(this.q, new BigInteger(1, yEnc)));
                break;
            default:
                throw new RuntimeException("Invalid point encoding 0x" + Integer.toString(encoded[0], 16));
            }

            return p;
        }

        public ECPoint getInfinity()
        {
            return infinity;
        }

        public boolean equals(
            Object anObject) 
        {
            if (anObject == this) 
            {
                return true;
            }

            if (!(anObject instanceof ECCurve.Fp)) 
            {
                return false;
            }

            ECCurve.Fp other = (ECCurve.Fp) anObject;

            return this.q.equals(other.q) 
                    && a.equals(other.a) && b.equals(other.b);
        }

        public int hashCode() 
        {
            return a.hashCode() ^ b.hashCode() ^ q.hashCode();
        }
    }

    /**
     * Elliptic curves over F2m. The Weierstrass equation is given by
     * y2 + xy = x3 + ax2 + b.
     */
    public static class F2m extends ECCurve
    {
        /**
         * The exponent m of F2m.
         */
        private int m;  // can't be final - JDK 1.1

        /**
         * TPB: The integer k where xm +
         * xk + 1 represents the reduction polynomial
         * f(z).
* PPB: The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private int k1; // can't be final - JDK 1.1 /** * TPB: Always set to 0
* PPB: The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private int k2; // can't be final - JDK 1.1 /** * TPB: Always set to 0
* PPB: The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private int k3; // can't be final - JDK 1.1 /** * The order of the base point of the curve. */ private BigInteger n; // can't be final - JDK 1.1 /** * The cofactor of the curve. */ private BigInteger h; // can't be final - JDK 1.1 /** * The point at infinity on this curve. */ private ECPoint.F2m infinity; // can't be final - JDK 1.1 /** * The parameter μ of the elliptic curve if this is * a Koblitz curve. */ private byte mu = 0; /** * The auxiliary values s0 and * s1 used for partial modular reduction for * Koblitz curves. */ private BigInteger[] si = null; /** * Constructor for Trinomial Polynomial Basis (TPB). * @param m The exponent m of * F2m. * @param k The integer k where xm + * xk + 1 represents the reduction * polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. */ public F2m( int m, int k, BigInteger a, BigInteger b) { this(m, k, 0, 0, a, b, null, null); } /** * Constructor for Trinomial Polynomial Basis (TPB). * @param m The exponent m of * F2m. * @param k The integer k where xm + * xk + 1 represents the reduction * polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param n The order of the main subgroup of the elliptic curve. * @param h The cofactor of the elliptic curve, i.e. * #Ea(F2m) = h * n. */ public F2m( int m, int k, BigInteger a, BigInteger b, BigInteger n, BigInteger h) { this(m, k, 0, 0, a, b, n, h); } /** * Constructor for Pentanomial Polynomial Basis (PPB). * @param m The exponent m of * F2m. * @param k1 The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k2 The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k3 The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. */ public F2m( int m, int k1, int k2, int k3, BigInteger a, BigInteger b) { this(m, k1, k2, k3, a, b, null, null); } /** * Constructor for Pentanomial Polynomial Basis (PPB). * @param m The exponent m of * F2m. * @param k1 The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k2 The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k3 The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param n The order of the main subgroup of the elliptic curve. * @param h The cofactor of the elliptic curve, i.e. * #Ea(F2m) = h * n. */ public F2m( int m, int k1, int k2, int k3, BigInteger a, BigInteger b, BigInteger n, BigInteger h) { this.m = m; this.k1 = k1; this.k2 = k2; this.k3 = k3; this.n = n; this.h = h; if (k1 == 0) { throw new IllegalArgumentException("k1 must be > 0"); } if (k2 == 0) { if (k3 != 0) { throw new IllegalArgumentException("k3 must be 0 if k2 == 0"); } } else { if (k2 <= k1) { throw new IllegalArgumentException("k2 must be > k1"); } if (k3 <= k2) { throw new IllegalArgumentException("k3 must be > k2"); } } this.a = fromBigInteger(a); this.b = fromBigInteger(b); this.infinity = new ECPoint.F2m(this, null, null); } public int getFieldSize() { return m; } public ECFieldElement fromBigInteger(BigInteger x) { return new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3, x); } public ECPoint createPoint(BigInteger x, BigInteger y, boolean withCompression) { return new ECPoint.F2m(this, fromBigInteger(x), fromBigInteger(y), withCompression); } /* (non-Javadoc) * @see org.bouncycastle.math.ec.ECCurve#decodePoint(byte[]) */ public ECPoint decodePoint(byte[] encoded) { ECPoint p = null; switch (encoded[0]) { // infinity case 0x00: p = getInfinity(); break; // compressed case 0x02: case 0x03: byte[] enc = new byte[encoded.length - 1]; System.arraycopy(encoded, 1, enc, 0, enc.length); if (encoded[0] == 0x02) { p = decompressPoint(enc, 0); } else { p = decompressPoint(enc, 1); } break; // uncompressed case 0x04: // hybrid case 0x06: case 0x07: byte[] xEnc = new byte[(encoded.length - 1) / 2]; byte[] yEnc = new byte[(encoded.length - 1) / 2]; System.arraycopy(encoded, 1, xEnc, 0, xEnc.length); System.arraycopy(encoded, xEnc.length + 1, yEnc, 0, yEnc.length); p = new ECPoint.F2m(this, new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3, new BigInteger(1, xEnc)), new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3, new BigInteger(1, yEnc)), false); break; default: throw new RuntimeException("Invalid point encoding 0x" + Integer.toString(encoded[0], 16)); } return p; } public ECPoint getInfinity() { return infinity; } /** * Returns true if this is a Koblitz curve (ABC curve). * @return true if this is a Koblitz curve (ABC curve), false otherwise */ public boolean isKoblitz() { return ((n != null) && (h != null) && ((a.toBigInteger().equals(ECConstants.ZERO)) || (a.toBigInteger().equals(ECConstants.ONE))) && (b.toBigInteger().equals(ECConstants.ONE))); } /** * Returns the parameter μ of the elliptic curve. * @return μ of the elliptic curve. * @throws IllegalArgumentException if the given ECCurve is not a * Koblitz curve. */ synchronized byte getMu() { if (mu == 0) { mu = Tnaf.getMu(this); } return mu; } /** * @return the auxiliary values s0 and * s1 used for partial modular reduction for * Koblitz curves. */ synchronized BigInteger[] getSi() { if (si == null) { si = Tnaf.getSi(this); } return si; } /** * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2). * * @param xEnc * The encoding of field element xp. * @param ypBit * ~yp, an indication bit for the decompression of yp. * @return the decompressed point. */ private ECPoint decompressPoint( byte[] xEnc, int ypBit) { ECFieldElement xp = new ECFieldElement.F2m( this.m, this.k1, this.k2, this.k3, new BigInteger(1, xEnc)); ECFieldElement yp = null; if (xp.toBigInteger().equals(ECConstants.ZERO)) { yp = (ECFieldElement.F2m)b; for (int i = 0; i < m - 1; i++) { yp = yp.square(); } } else { ECFieldElement beta = xp.add(a).add( b.multiply(xp.square().invert())); ECFieldElement z = solveQuadradicEquation(beta); if (z == null) { throw new RuntimeException("Invalid point compression"); } int zBit = 0; if (z.toBigInteger().testBit(0)) { zBit = 1; } if (zBit != ypBit) { z = z.add(new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3, ECConstants.ONE)); } yp = xp.multiply(z); } return new ECPoint.F2m(this, xp, yp); } /** * Solves a quadratic equation z2 + z = beta(X9.62 * D.1.6) The other solution is z + 1. * * @param beta * The value to solve the qradratic equation for. * @return the solution for z2 + z = beta or * null if no solution exists. */ private ECFieldElement solveQuadradicEquation(ECFieldElement beta) { ECFieldElement zeroElement = new ECFieldElement.F2m( this.m, this.k1, this.k2, this.k3, ECConstants.ZERO); if (beta.toBigInteger().equals(ECConstants.ZERO)) { return zeroElement; } ECFieldElement z = null; ECFieldElement gamma = zeroElement; Random rand = new Random(); do { ECFieldElement t = new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3, new BigInteger(m, rand)); z = zeroElement; ECFieldElement w = beta; for (int i = 1; i <= m - 1; i++) { ECFieldElement w2 = w.square(); z = z.square().add(w2.multiply(t)); w = w2.add(beta); } if (!w.toBigInteger().equals(ECConstants.ZERO)) { return null; } gamma = z.square().add(z); } while (gamma.toBigInteger().equals(ECConstants.ZERO)); return z; } public boolean equals( Object anObject) { if (anObject == this) { return true; } if (!(anObject instanceof ECCurve.F2m)) { return false; } ECCurve.F2m other = (ECCurve.F2m)anObject; return (this.m == other.m) && (this.k1 == other.k1) && (this.k2 == other.k2) && (this.k3 == other.k3) && a.equals(other.a) && b.equals(other.b); } public int hashCode() { return this.a.hashCode() ^ this.b.hashCode() ^ m ^ k1 ^ k2 ^ k3; } public int getM() { return m; } /** * Return true if curve uses a Trinomial basis. * * @return true if curve Trinomial, false otherwise. */ public boolean isTrinomial() { return k2 == 0 && k3 == 0; } public int getK1() { return k1; } public int getK2() { return k2; } public int getK3() { return k3; } public BigInteger getN() { return n; } public BigInteger getH() { return h; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy