org.bouncycastle.crypto.digests.LongDigest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk18on Show documentation
Show all versions of bcprov-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up.
package org.bouncycastle.crypto.digests;
import org.bouncycastle.crypto.CryptoServiceProperties;
import org.bouncycastle.crypto.CryptoServicePurpose;
import org.bouncycastle.crypto.ExtendedDigest;
import org.bouncycastle.util.Memoable;
import org.bouncycastle.util.Pack;
/**
* Base class for SHA-384 and SHA-512.
*/
public abstract class LongDigest
implements ExtendedDigest, Memoable, EncodableDigest
{
private static final int BYTE_LENGTH = 128;
protected final CryptoServicePurpose purpose;
private byte[] xBuf = new byte[8];
private int xBufOff;
private long byteCount1;
private long byteCount2;
protected long H1, H2, H3, H4, H5, H6, H7, H8;
private long[] W = new long[80];
private int wOff;
/**
* Constructor for variable length word
*/
protected LongDigest()
{
this(CryptoServicePurpose.ANY);
}
/**
* Constructor for variable length word
*/
protected LongDigest(CryptoServicePurpose purpose)
{
this.purpose = purpose;
xBufOff = 0;
reset();
}
/**
* Copy constructor. We are using copy constructors in place
* of the Object.clone() interface as this interface is not
* supported by J2ME.
*/
protected LongDigest(LongDigest t)
{
this.purpose = t.purpose;
copyIn(t);
}
protected void copyIn(LongDigest t)
{
System.arraycopy(t.xBuf, 0, xBuf, 0, t.xBuf.length);
xBufOff = t.xBufOff;
byteCount1 = t.byteCount1;
byteCount2 = t.byteCount2;
H1 = t.H1;
H2 = t.H2;
H3 = t.H3;
H4 = t.H4;
H5 = t.H5;
H6 = t.H6;
H7 = t.H7;
H8 = t.H8;
System.arraycopy(t.W, 0, W, 0, t.W.length);
wOff = t.wOff;
}
protected void populateState(byte[] state)
{
System.arraycopy(xBuf, 0, state, 0, xBufOff);
Pack.intToBigEndian(xBufOff, state, 8);
Pack.longToBigEndian(byteCount1, state, 12);
Pack.longToBigEndian(byteCount2, state, 20);
Pack.longToBigEndian(H1, state, 28);
Pack.longToBigEndian(H2, state, 36);
Pack.longToBigEndian(H3, state, 44);
Pack.longToBigEndian(H4, state, 52);
Pack.longToBigEndian(H5, state, 60);
Pack.longToBigEndian(H6, state, 68);
Pack.longToBigEndian(H7, state, 76);
Pack.longToBigEndian(H8, state, 84);
Pack.intToBigEndian(wOff, state, 92);
for (int i = 0; i < wOff; i++)
{
Pack.longToBigEndian(W[i], state, 96 + (i * 8));
}
}
protected void restoreState(byte[] encodedState)
{
xBufOff = Pack.bigEndianToInt(encodedState, 8);
System.arraycopy(encodedState, 0, xBuf, 0, xBufOff);
byteCount1 = Pack.bigEndianToLong(encodedState, 12);
byteCount2 = Pack.bigEndianToLong(encodedState, 20);
H1 = Pack.bigEndianToLong(encodedState, 28);
H2 = Pack.bigEndianToLong(encodedState, 36);
H3 = Pack.bigEndianToLong(encodedState, 44);
H4 = Pack.bigEndianToLong(encodedState, 52);
H5 = Pack.bigEndianToLong(encodedState, 60);
H6 = Pack.bigEndianToLong(encodedState, 68);
H7 = Pack.bigEndianToLong(encodedState, 76);
H8 = Pack.bigEndianToLong(encodedState, 84);
wOff = Pack.bigEndianToInt(encodedState, 92);
for (int i = 0; i < wOff; i++)
{
W[i] = Pack.bigEndianToLong(encodedState, 96 + (i * 8));
}
}
protected int getEncodedStateSize()
{
return 96 + (wOff * 8);
}
public void update(
byte in)
{
xBuf[xBufOff++] = in;
if (xBufOff == xBuf.length)
{
processWord(xBuf, 0);
xBufOff = 0;
}
byteCount1++;
}
public void update(
byte[] in,
int inOff,
int len)
{
//
// fill the current word
//
while ((xBufOff != 0) && (len > 0))
{
update(in[inOff]);
inOff++;
len--;
}
//
// process whole words.
//
while (len >= xBuf.length)
{
processWord(in, inOff);
inOff += xBuf.length;
len -= xBuf.length;
byteCount1 += xBuf.length;
}
//
// load in the remainder.
//
while (len > 0)
{
update(in[inOff]);
inOff++;
len--;
}
}
public void finish()
{
adjustByteCounts();
long lowBitLength = byteCount1 << 3;
long hiBitLength = byteCount2;
//
// add the pad bytes.
//
update((byte)128);
while (xBufOff != 0)
{
update((byte)0);
}
processLength(lowBitLength, hiBitLength);
processBlock();
}
public void reset()
{
byteCount1 = 0;
byteCount2 = 0;
xBufOff = 0;
for (int i = 0; i < xBuf.length; i++)
{
xBuf[i] = 0;
}
wOff = 0;
for (int i = 0; i != W.length; i++)
{
W[i] = 0;
}
}
public int getByteLength()
{
return BYTE_LENGTH;
}
protected void processWord(
byte[] in,
int inOff)
{
W[wOff] = Pack.bigEndianToLong(in, inOff);
if (++wOff == 16)
{
processBlock();
}
}
/**
* adjust the byte counts so that byteCount2 represents the
* upper long (less 3 bits) word of the byte count.
*/
private void adjustByteCounts()
{
if (byteCount1 > 0x1fffffffffffffffL)
{
byteCount2 += (byteCount1 >>> 61);
byteCount1 &= 0x1fffffffffffffffL;
}
}
protected void processLength(
long lowW,
long hiW)
{
if (wOff > 14)
{
processBlock();
}
W[14] = hiW;
W[15] = lowW;
}
protected void processBlock()
{
adjustByteCounts();
//
// expand 16 word block into 80 word blocks.
//
for (int t = 16; t <= 79; t++)
{
W[t] = Sigma1(W[t - 2]) + W[t - 7] + Sigma0(W[t - 15]) + W[t - 16];
}
//
// set up working variables.
//
long a = H1;
long b = H2;
long c = H3;
long d = H4;
long e = H5;
long f = H6;
long g = H7;
long h = H8;
int t = 0;
for(int i = 0; i < 10; i ++)
{
// t = 8 * i
h += Sum1(e) + Ch(e, f, g) + K[t] + W[t++];
d += h;
h += Sum0(a) + Maj(a, b, c);
// t = 8 * i + 1
g += Sum1(d) + Ch(d, e, f) + K[t] + W[t++];
c += g;
g += Sum0(h) + Maj(h, a, b);
// t = 8 * i + 2
f += Sum1(c) + Ch(c, d, e) + K[t] + W[t++];
b += f;
f += Sum0(g) + Maj(g, h, a);
// t = 8 * i + 3
e += Sum1(b) + Ch(b, c, d) + K[t] + W[t++];
a += e;
e += Sum0(f) + Maj(f, g, h);
// t = 8 * i + 4
d += Sum1(a) + Ch(a, b, c) + K[t] + W[t++];
h += d;
d += Sum0(e) + Maj(e, f, g);
// t = 8 * i + 5
c += Sum1(h) + Ch(h, a, b) + K[t] + W[t++];
g += c;
c += Sum0(d) + Maj(d, e, f);
// t = 8 * i + 6
b += Sum1(g) + Ch(g, h, a) + K[t] + W[t++];
f += b;
b += Sum0(c) + Maj(c, d, e);
// t = 8 * i + 7
a += Sum1(f) + Ch(f, g, h) + K[t] + W[t++];
e += a;
a += Sum0(b) + Maj(b, c, d);
}
H1 += a;
H2 += b;
H3 += c;
H4 += d;
H5 += e;
H6 += f;
H7 += g;
H8 += h;
//
// reset the offset and clean out the word buffer.
//
wOff = 0;
for (int i = 0; i < 16; i++)
{
W[i] = 0;
}
}
/* SHA-384 and SHA-512 functions (as for SHA-256 but for longs) */
private long Ch(
long x,
long y,
long z)
{
return ((x & y) ^ ((~x) & z));
}
private long Maj(
long x,
long y,
long z)
{
return ((x & y) ^ (x & z) ^ (y & z));
}
private long Sum0(
long x)
{
return ((x << 36)|(x >>> 28)) ^ ((x << 30)|(x >>> 34)) ^ ((x << 25)|(x >>> 39));
}
private long Sum1(
long x)
{
return ((x << 50)|(x >>> 14)) ^ ((x << 46)|(x >>> 18)) ^ ((x << 23)|(x >>> 41));
}
private long Sigma0(
long x)
{
return ((x << 63)|(x >>> 1)) ^ ((x << 56)|(x >>> 8)) ^ (x >>> 7);
}
private long Sigma1(
long x)
{
return ((x << 45)|(x >>> 19)) ^ ((x << 3)|(x >>> 61)) ^ (x >>> 6);
}
/* SHA-384 and SHA-512 Constants
* (represent the first 64 bits of the fractional parts of the
* cube roots of the first sixty-four prime numbers)
*/
static final long K[] = {
0x428a2f98d728ae22L, 0x7137449123ef65cdL, 0xb5c0fbcfec4d3b2fL, 0xe9b5dba58189dbbcL,
0x3956c25bf348b538L, 0x59f111f1b605d019L, 0x923f82a4af194f9bL, 0xab1c5ed5da6d8118L,
0xd807aa98a3030242L, 0x12835b0145706fbeL, 0x243185be4ee4b28cL, 0x550c7dc3d5ffb4e2L,
0x72be5d74f27b896fL, 0x80deb1fe3b1696b1L, 0x9bdc06a725c71235L, 0xc19bf174cf692694L,
0xe49b69c19ef14ad2L, 0xefbe4786384f25e3L, 0x0fc19dc68b8cd5b5L, 0x240ca1cc77ac9c65L,
0x2de92c6f592b0275L, 0x4a7484aa6ea6e483L, 0x5cb0a9dcbd41fbd4L, 0x76f988da831153b5L,
0x983e5152ee66dfabL, 0xa831c66d2db43210L, 0xb00327c898fb213fL, 0xbf597fc7beef0ee4L,
0xc6e00bf33da88fc2L, 0xd5a79147930aa725L, 0x06ca6351e003826fL, 0x142929670a0e6e70L,
0x27b70a8546d22ffcL, 0x2e1b21385c26c926L, 0x4d2c6dfc5ac42aedL, 0x53380d139d95b3dfL,
0x650a73548baf63deL, 0x766a0abb3c77b2a8L, 0x81c2c92e47edaee6L, 0x92722c851482353bL,
0xa2bfe8a14cf10364L, 0xa81a664bbc423001L, 0xc24b8b70d0f89791L, 0xc76c51a30654be30L,
0xd192e819d6ef5218L, 0xd69906245565a910L, 0xf40e35855771202aL, 0x106aa07032bbd1b8L,
0x19a4c116b8d2d0c8L, 0x1e376c085141ab53L, 0x2748774cdf8eeb99L, 0x34b0bcb5e19b48a8L,
0x391c0cb3c5c95a63L, 0x4ed8aa4ae3418acbL, 0x5b9cca4f7763e373L, 0x682e6ff3d6b2b8a3L,
0x748f82ee5defb2fcL, 0x78a5636f43172f60L, 0x84c87814a1f0ab72L, 0x8cc702081a6439ecL,
0x90befffa23631e28L, 0xa4506cebde82bde9L, 0xbef9a3f7b2c67915L, 0xc67178f2e372532bL,
0xca273eceea26619cL, 0xd186b8c721c0c207L, 0xeada7dd6cde0eb1eL, 0xf57d4f7fee6ed178L,
0x06f067aa72176fbaL, 0x0a637dc5a2c898a6L, 0x113f9804bef90daeL, 0x1b710b35131c471bL,
0x28db77f523047d84L, 0x32caab7b40c72493L, 0x3c9ebe0a15c9bebcL, 0x431d67c49c100d4cL,
0x4cc5d4becb3e42b6L, 0x597f299cfc657e2aL, 0x5fcb6fab3ad6faecL, 0x6c44198c4a475817L
};
protected abstract CryptoServiceProperties cryptoServiceProperties();
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy