All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.custom.sec.SecP384R1FieldElement Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.math.ec.custom.sec;

import java.math.BigInteger;

import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;

public class SecP384R1FieldElement extends ECFieldElement.AbstractFp
{
    public static final BigInteger Q = new BigInteger(1,
        Hex.decodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"));

    protected int[] x;

    public SecP384R1FieldElement(BigInteger x)
    {
        if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
        {
            throw new IllegalArgumentException("x value invalid for SecP384R1FieldElement");
        }

        this.x = SecP384R1Field.fromBigInteger(x);
    }

    public SecP384R1FieldElement()
    {
        this.x = Nat.create(12);
    }

    protected SecP384R1FieldElement(int[] x)
    {
        this.x = x;
    }

    public boolean isZero()
    {
        return Nat.isZero(12, x);
    }

    public boolean isOne()
    {
        return Nat.isOne(12, x);
    }

    public boolean testBitZero()
    {
        return Nat.getBit(x, 0) == 1;
    }

    public BigInteger toBigInteger()
    {
        return Nat.toBigInteger(12, x);
    }

    public String getFieldName()
    {
        return "SecP384R1Field";
    }

    public int getFieldSize()
    {
        return Q.bitLength();
    }

    public ECFieldElement add(ECFieldElement b)
    {
        int[] z = Nat.create(12);
        SecP384R1Field.add(x, ((SecP384R1FieldElement)b).x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement addOne()
    {
        int[] z = Nat.create(12);
        SecP384R1Field.addOne(x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement subtract(ECFieldElement b)
    {
        int[] z = Nat.create(12);
        SecP384R1Field.subtract(x, ((SecP384R1FieldElement)b).x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement multiply(ECFieldElement b)
    {
        int[] z = Nat.create(12);
        SecP384R1Field.multiply(x, ((SecP384R1FieldElement)b).x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement divide(ECFieldElement b)
    {
//        return multiply(b.invert());
        int[] z = Nat.create(12);
        SecP384R1Field.inv(((SecP384R1FieldElement)b).x, z);
        SecP384R1Field.multiply(z, x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement negate()
    {
        int[] z = Nat.create(12);
        SecP384R1Field.negate(x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement square()
    {
        int[] z = Nat.create(12);
        SecP384R1Field.square(x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement invert()
    {
//        return new SecP384R1FieldElement(toBigInteger().modInverse(Q));
        int[] z = Nat.create(12);
        SecP384R1Field.inv(x, z);
        return new SecP384R1FieldElement(z);
    }

    /**
     * return a sqrt root - the routine verifies that the calculation returns the right value - if
     * none exists it returns null.
     */
    public ECFieldElement sqrt()
    {
        // Raise this element to the exponent 2^382 - 2^126 - 2^94 + 2^30

        int[] x1 = this.x;
        if (Nat.isZero(12, x1) || Nat.isOne(12, x1))
        {
            return this;
        }

        int[] tt0 = Nat.create(24);
        int[] t1 = Nat.create(12);
        int[] t2 = Nat.create(12);
        int[] t3 = Nat.create(12);
        int[] t4 = Nat.create(12);

        SecP384R1Field.square(x1, t1, tt0);
        SecP384R1Field.multiply(t1, x1, t1, tt0);

        SecP384R1Field.squareN(t1, 2, t2, tt0);
        SecP384R1Field.multiply(t2, t1, t2, tt0);

        SecP384R1Field.square(t2, t2, tt0);
        SecP384R1Field.multiply(t2, x1, t2, tt0);

        SecP384R1Field.squareN(t2, 5, t3, tt0);
        SecP384R1Field.multiply(t3, t2, t3, tt0);

        SecP384R1Field.squareN(t3, 5, t4, tt0);
        SecP384R1Field.multiply(t4, t2, t4, tt0);

        SecP384R1Field.squareN(t4, 15, t2, tt0);
        SecP384R1Field.multiply(t2, t4, t2, tt0);

        SecP384R1Field.squareN(t2, 2, t3, tt0);
        SecP384R1Field.multiply(t1, t3, t1, tt0);

        SecP384R1Field.squareN(t3, 28, t3, tt0);
        SecP384R1Field.multiply(t2, t3, t2, tt0);

        SecP384R1Field.squareN(t2, 60, t3, tt0);
        SecP384R1Field.multiply(t3, t2, t3, tt0);

        int[] r = t2;

        SecP384R1Field.squareN(t3, 120, r, tt0);
        SecP384R1Field.multiply(r, t3, r, tt0);

        SecP384R1Field.squareN(r, 15, r, tt0);
        SecP384R1Field.multiply(r, t4, r, tt0);

        SecP384R1Field.squareN(r, 33, r, tt0);
        SecP384R1Field.multiply(r, t1, r, tt0);

        SecP384R1Field.squareN(r, 64, r, tt0);
        SecP384R1Field.multiply(r, x1, r, tt0);

        SecP384R1Field.squareN(r, 30, t1, tt0);
        SecP384R1Field.square(t1, t2, tt0);

        return Nat.eq(12, x1, t2) ? new SecP384R1FieldElement(t1) : null;
    }

    public boolean equals(Object other)
    {
        if (other == this)
        {
            return true;
        }

        if (!(other instanceof SecP384R1FieldElement))
        {
            return false;
        }

        SecP384R1FieldElement o = (SecP384R1FieldElement)other;
        return Nat.eq(12, x, o.x);
    }

    public int hashCode()
    {
        return Q.hashCode() ^ Arrays.hashCode(x, 0, 12);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy