org.bouncycastle.math.ec.rfc8032.Ed448 Maven / Gradle / Ivy
Show all versions of bcprov-jdk18on Show documentation
package org.bouncycastle.math.ec.rfc8032;
import java.security.SecureRandom;
import org.bouncycastle.crypto.Xof;
import org.bouncycastle.crypto.digests.SHAKEDigest;
import org.bouncycastle.math.ec.rfc7748.X448;
import org.bouncycastle.math.ec.rfc7748.X448Field;
import org.bouncycastle.math.raw.Nat;
/**
* A low-level implementation of the Ed448 and Ed448ph instantiations of the Edwards-Curve Digital Signature
* Algorithm specified in RFC 8032.
*
* The implementation uses the "signed mult-comb" algorithm (for scalar multiplication by a fixed point) from
* Mike Hamburg, "Fast and compact elliptic-curve cryptography". Standard
* projective coordinates are
* used for most point arithmetic.
*/
public abstract class Ed448
{
// x^2 + y^2 == 1 - 39081 * x^2 * y^2
public static final class Algorithm
{
public static final int Ed448 = 0;
public static final int Ed448ph = 1;
}
public static final class PublicPoint
{
final int[] data;
PublicPoint(int[] data)
{
this.data = data;
}
}
private static class F extends X448Field {};
private static final int COORD_INTS = 14;
private static final int POINT_BYTES = COORD_INTS * 4 + 1;
private static final int SCALAR_INTS = 14;
private static final int SCALAR_BYTES = SCALAR_INTS * 4 + 1;
public static final int PREHASH_SIZE = 64;
public static final int PUBLIC_KEY_SIZE = POINT_BYTES;
public static final int SECRET_KEY_SIZE = 57;
public static final int SIGNATURE_SIZE = POINT_BYTES + SCALAR_BYTES;
// "SigEd448"
private static final byte[] DOM4_PREFIX = new byte[]{ 0x53, 0x69, 0x67, 0x45, 0x64, 0x34, 0x34, 0x38 };
private static final int[] P = new int[] { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
private static final int[] B_x = new int[]{ 0x070CC05E, 0x026A82BC, 0x00938E26, 0x080E18B0, 0x0511433B, 0x0F72AB66,
0x0412AE1A, 0x0A3D3A46, 0x0A6DE324, 0x00F1767E, 0x04657047, 0x036DA9E1, 0x05A622BF, 0x0ED221D1, 0x066BED0D,
0x04F1970C };
private static final int[] B_y = new int[]{ 0x0230FA14, 0x008795BF, 0x07C8AD98, 0x0132C4ED, 0x09C4FDBD, 0x01CE67C3,
0x073AD3FF, 0x005A0C2D, 0x07789C1E, 0x0A398408, 0x0A73736C, 0x0C7624BE, 0x003756C9, 0x02488762, 0x016EB6BC,
0x0693F467 };
// 2^225 * B
private static final int[] B225_x = new int[]{ 0x06909EE2, 0x01D7605C, 0x0995EC8A, 0x0FC4D970, 0x0CF2B361,
0x02D82E9D, 0x01225F55, 0x007F0EF6, 0x0AEE9C55, 0x0A240C13, 0x05627B54, 0x0D449D1E, 0x03A44575, 0x007164A7,
0x0BD4BD71, 0x061A15FD };
private static final int[] B225_y = new int[]{ 0x0D3A9FE4, 0x030696B9, 0x07E7E326, 0x068308C7, 0x0CE0B8C8,
0x03AC222B, 0x0304DB8E, 0x083EE319, 0x05E5DB0B, 0x0ECA503B, 0x0B1C6539, 0x078A8DCE, 0x02D256BC, 0x04A8B05E,
0x0BD9FD57, 0x0A1C3CB8 };
private static final int C_d = -39081;
// private static final int WNAF_WIDTH = 6;
private static final int WNAF_WIDTH_225 = 5;
private static final int WNAF_WIDTH_BASE = 7;
// scalarMultBase supports varying blocks, teeth, spacing so long as their product is in range [449, 479]
private static final int PRECOMP_BLOCKS = 5;
private static final int PRECOMP_TEETH = 5;
private static final int PRECOMP_SPACING = 18;
private static final int PRECOMP_RANGE = PRECOMP_BLOCKS * PRECOMP_TEETH * PRECOMP_SPACING; // 448 < range < 480
private static final int PRECOMP_POINTS = 1 << (PRECOMP_TEETH - 1);
private static final int PRECOMP_MASK = PRECOMP_POINTS - 1;
private static final Object PRECOMP_LOCK = new Object();
private static PointAffine[] PRECOMP_BASE_WNAF = null;
private static PointAffine[] PRECOMP_BASE225_WNAF = null;
private static int[] PRECOMP_BASE_COMB = null;
private static class PointAffine
{
int[] x = F.create();
int[] y = F.create();
}
private static class PointProjective
{
int[] x = F.create();
int[] y = F.create();
int[] z = F.create();
}
// Temp space to avoid allocations in point formulae.
private static class PointTemp
{
int[] r0 = F.create();
int[] r1 = F.create();;
int[] r2 = F.create();
int[] r3 = F.create();;
int[] r4 = F.create();
int[] r5 = F.create();;
int[] r6 = F.create();
int[] r7 = F.create();;
}
private static byte[] calculateS(byte[] r, byte[] k, byte[] s)
{
int[] t = new int[SCALAR_INTS * 2]; Scalar448.decode(r, t);
int[] u = new int[SCALAR_INTS]; Scalar448.decode(k, u);
int[] v = new int[SCALAR_INTS]; Scalar448.decode(s, v);
Nat.mulAddTo(SCALAR_INTS, u, v, t);
byte[] result = new byte[SCALAR_BYTES * 2];
Codec.encode32(t, 0, t.length, result, 0);
return Scalar448.reduce(result);
}
private static boolean checkContextVar(byte[] ctx)
{
return ctx != null && ctx.length < 256;
}
private static int checkPoint(PointAffine p)
{
int[] t = F.create();
int[] u = F.create();
int[] v = F.create();
F.sqr(p.x, u);
F.sqr(p.y, v);
F.mul(u, v, t);
F.add(u, v, u);
F.mul(t, -C_d, t);
F.subOne(t);
F.add(t, u, t);
F.normalize(t);
return F.isZero(t);
}
private static int checkPoint(PointProjective p)
{
int[] t = F.create();
int[] u = F.create();
int[] v = F.create();
int[] w = F.create();
F.sqr(p.x, u);
F.sqr(p.y, v);
F.sqr(p.z, w);
F.mul(u, v, t);
F.add(u, v, u);
F.mul(u, w, u);
F.sqr(w, w);
F.mul(t, -C_d, t);
F.sub(t, w, t);
F.add(t, u, t);
F.normalize(t);
return F.isZero(t);
}
private static boolean checkPointFullVar(byte[] p)
{
if ((p[POINT_BYTES - 1] & 0x7F) != 0x00)
return false;
int y13 = Codec.decode32(p, 52);
int t0 = y13;
int t1 = y13 ^ P[13];
for (int i = COORD_INTS - 2; i > 0; --i)
{
int yi = Codec.decode32(p, i * 4);
// Reject non-canonical encodings (i.e. >= P)
if (t1 == 0 && (yi + Integer.MIN_VALUE) > (P[i] + Integer.MIN_VALUE))
return false;
t0 |= yi;
t1 |= yi ^ P[i];
}
int y0 = Codec.decode32(p, 0);
// Reject 0 and 1
if (t0 == 0 && (y0 + Integer.MIN_VALUE) <= (1 + Integer.MIN_VALUE))
return false;
// Reject P - 1 and non-canonical encodings (i.e. >= P)
if (t1 == 0 && (y0 + Integer.MIN_VALUE) >= (P[0] - 1 + Integer.MIN_VALUE))
return false;
return true;
}
private static boolean checkPointOrderVar(PointAffine p)
{
PointProjective r = new PointProjective();
scalarMultOrderVar(p, r);
return normalizeToNeutralElementVar(r);
}
private static boolean checkPointVar(byte[] p)
{
if ((p[POINT_BYTES - 1] & 0x7F) != 0x00)
{
return false;
}
if (Codec.decode32(p, 52) != P[13])
{
return true;
}
int[] t = new int[COORD_INTS];
Codec.decode32(p, 0, t, 0, COORD_INTS);
return !Nat.gte(COORD_INTS, t, P);
}
private static byte[] copy(byte[] buf, int off, int len)
{
byte[] result = new byte[len];
System.arraycopy(buf, off, result, 0, len);
return result;
}
public static Xof createPrehash()
{
return createXof();
}
private static Xof createXof()
{
return new SHAKEDigest(256);
}
private static boolean decodePointVar(byte[] p, boolean negate, PointAffine r)
{
int x_0 = (p[POINT_BYTES - 1] & 0x80) >>> 7;
F.decode(p, r.y);
int[] u = F.create();
int[] v = F.create();
F.sqr(r.y, u);
F.mul(u, -C_d, v);
F.negate(u, u);
F.addOne(u);
F.addOne(v);
if (!F.sqrtRatioVar(u, v, r.x))
{
return false;
}
F.normalize(r.x);
if (x_0 == 1 && F.isZeroVar(r.x))
{
return false;
}
if (negate ^ (x_0 != (r.x[0] & 1)))
{
F.negate(r.x, r.x);
F.normalize(r.x);
}
return true;
}
private static void dom4(Xof d, byte phflag, byte[] ctx)
{
// assert ctx != null;
int n = DOM4_PREFIX.length;
byte[] t = new byte[n + 2 + ctx.length];
System.arraycopy(DOM4_PREFIX, 0, t, 0, n);
t[n] = phflag;
t[n + 1] = (byte)ctx.length;
System.arraycopy(ctx, 0, t, n + 2, ctx.length);
d.update(t, 0, t.length);
}
private static void encodePoint(PointAffine p, byte[] r, int rOff)
{
F.encode(p.y, r, rOff);
r[rOff + POINT_BYTES - 1] = (byte)((p.x[0] & 1) << 7);
}
public static void encodePublicPoint(PublicPoint publicPoint, byte[] pk, int pkOff)
{
F.encode(publicPoint.data, F.SIZE, pk, pkOff);
pk[pkOff + POINT_BYTES - 1] = (byte)((publicPoint.data[0] & 1) << 7);
}
private static int encodeResult(PointProjective p, byte[] r, int rOff)
{
PointAffine q = new PointAffine();
normalizeToAffine(p, q);
int result = checkPoint(q);
encodePoint(q, r, rOff);
return result;
}
private static PublicPoint exportPoint(PointAffine p)
{
int[] data = new int[F.SIZE * 2];
F.copy(p.x, 0, data, 0);
F.copy(p.y, 0, data, F.SIZE);
return new PublicPoint(data);
}
public static void generatePrivateKey(SecureRandom random, byte[] k)
{
if (k.length != SECRET_KEY_SIZE)
{
throw new IllegalArgumentException("k");
}
random.nextBytes(k);
}
public static void generatePublicKey(byte[] sk, int skOff, byte[] pk, int pkOff)
{
Xof d = createXof();
byte[] h = new byte[SCALAR_BYTES * 2];
d.update(sk, skOff, SECRET_KEY_SIZE);
d.doFinal(h, 0, h.length);
byte[] s = new byte[SCALAR_BYTES];
pruneScalar(h, 0, s);
scalarMultBaseEncoded(s, pk, pkOff);
}
public static PublicPoint generatePublicKey(byte[] sk, int skOff)
{
Xof d = createXof();
byte[] h = new byte[SCALAR_BYTES * 2];
d.update(sk, skOff, SECRET_KEY_SIZE);
d.doFinal(h, 0, h.length);
byte[] s = new byte[SCALAR_BYTES];
pruneScalar(h, 0, s);
PointProjective p = new PointProjective();
scalarMultBase(s, p);
PointAffine q = new PointAffine();
normalizeToAffine(p, q);
if (0 == checkPoint(q))
{
throw new IllegalStateException();
}
return exportPoint(q);
}
private static int getWindow4(int[] x, int n)
{
int w = n >>> 3, b = (n & 7) << 2;
return (x[w] >>> b) & 15;
}
private static void implSign(Xof d, byte[] h, byte[] s, byte[] pk, int pkOff, byte[] ctx, byte phflag,
byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
dom4(d, phflag, ctx);
d.update(h, SCALAR_BYTES, SCALAR_BYTES);
d.update(m, mOff, mLen);
d.doFinal(h, 0, h.length);
byte[] r = Scalar448.reduce(h);
byte[] R = new byte[POINT_BYTES];
scalarMultBaseEncoded(r, R, 0);
dom4(d, phflag, ctx);
d.update(R, 0, POINT_BYTES);
d.update(pk, pkOff, POINT_BYTES);
d.update(m, mOff, mLen);
d.doFinal(h, 0, h.length);
byte[] k = Scalar448.reduce(h);
byte[] S = calculateS(r, k, s);
System.arraycopy(R, 0, sig, sigOff, POINT_BYTES);
System.arraycopy(S, 0, sig, sigOff + POINT_BYTES, SCALAR_BYTES);
}
private static void implSign(byte[] sk, int skOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen,
byte[] sig, int sigOff)
{
if (!checkContextVar(ctx))
{
throw new IllegalArgumentException("ctx");
}
Xof d = createXof();
byte[] h = new byte[SCALAR_BYTES * 2];
d.update(sk, skOff, SECRET_KEY_SIZE);
d.doFinal(h, 0, h.length);
byte[] s = new byte[SCALAR_BYTES];
pruneScalar(h, 0, s);
byte[] pk = new byte[POINT_BYTES];
scalarMultBaseEncoded(s, pk, 0);
implSign(d, h, s, pk, 0, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
private static void implSign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte phflag,
byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
if (!checkContextVar(ctx))
{
throw new IllegalArgumentException("ctx");
}
Xof d = createXof();
byte[] h = new byte[SCALAR_BYTES * 2];
d.update(sk, skOff, SECRET_KEY_SIZE);
d.doFinal(h, 0, h.length);
byte[] s = new byte[SCALAR_BYTES];
pruneScalar(h, 0, s);
implSign(d, h, s, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
private static boolean implVerify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte phflag,
byte[] m, int mOff, int mLen)
{
if (!checkContextVar(ctx))
{
throw new IllegalArgumentException("ctx");
}
byte[] R = copy(sig, sigOff, POINT_BYTES);
byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES);
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointVar(R))
{
return false;
}
int[] nS = new int[SCALAR_INTS];
if (!Scalar448.checkVar(S, nS))
{
return false;
}
if (!checkPointFullVar(A))
return false;
PointAffine pR = new PointAffine();
if (!decodePointVar(R, true, pR))
{
return false;
}
PointAffine pA = new PointAffine();
if (!decodePointVar(A, true, pA))
{
return false;
}
Xof d = createXof();
byte[] h = new byte[SCALAR_BYTES * 2];
dom4(d, phflag, ctx);
d.update(R, 0, POINT_BYTES);
d.update(A, 0, POINT_BYTES);
d.update(m, mOff, mLen);
d.doFinal(h, 0, h.length);
byte[] k = Scalar448.reduce(h);
int[] nA = new int[SCALAR_INTS];
Scalar448.decode(k, nA);
int[] v0 = new int[8];
int[] v1 = new int[8];
Scalar448.reduceBasisVar(nA, v0, v1);
Scalar448.multiply225Var(nS, v1, nS);
PointProjective pZ = new PointProjective();
scalarMultStraus225Var(nS, v0, pA, v1, pR, pZ);
return normalizeToNeutralElementVar(pZ);
}
private static boolean implVerify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte phflag,
byte[] m, int mOff, int mLen)
{
if (!checkContextVar(ctx))
{
throw new IllegalArgumentException("ctx");
}
byte[] R = copy(sig, sigOff, POINT_BYTES);
byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES);
if (!checkPointVar(R))
{
return false;
}
int[] nS = new int[SCALAR_INTS];
if (!Scalar448.checkVar(S, nS))
{
return false;
}
PointAffine pR = new PointAffine();
if (!decodePointVar(R, true, pR))
{
return false;
}
PointAffine pA = new PointAffine();
F.negate(publicPoint.data, pA.x);
F.copy(publicPoint.data, F.SIZE, pA.y, 0);
byte[] A = new byte[PUBLIC_KEY_SIZE];
encodePublicPoint(publicPoint, A, 0);
Xof d = createXof();
byte[] h = new byte[SCALAR_BYTES * 2];
dom4(d, phflag, ctx);
d.update(R, 0, POINT_BYTES);
d.update(A, 0, POINT_BYTES);
d.update(m, mOff, mLen);
d.doFinal(h, 0, h.length);
byte[] k = Scalar448.reduce(h);
int[] nA = new int[SCALAR_INTS];
Scalar448.decode(k, nA);
int[] v0 = new int[8];
int[] v1 = new int[8];
Scalar448.reduceBasisVar(nA, v0, v1);
Scalar448.multiply225Var(nS, v1, nS);
PointProjective pZ = new PointProjective();
scalarMultStraus225Var(nS, v0, pA, v1, pR, pZ);
return normalizeToNeutralElementVar(pZ);
}
private static void invertZs(PointProjective[] points)
{
int count = points.length;
int[] cs = F.createTable(count);
int[] u = F.create();
F.copy(points[0].z, 0, u, 0);
F.copy(u, 0, cs, 0);
int i = 0;
while (++i < count)
{
F.mul(u, points[i].z, u);
F.copy(u, 0, cs, i * F.SIZE);
}
F.invVar(u, u);
--i;
int[] t = F.create();
while (i > 0)
{
int j = i--;
F.copy(cs, i * F.SIZE, t, 0);
F.mul(t, u, t);
F.mul(u, points[j].z, u);
F.copy(t, 0, points[j].z, 0);
}
F.copy(u, 0, points[0].z, 0);
}
// private static boolean isNeutralElementVar(int[] x, int[] y)
// {
// return F.isZeroVar(x) && F.isOneVar(y);
// }
private static boolean isNeutralElementVar(int[] x, int[] y, int[] z)
{
return F.isZeroVar(x) && F.areEqualVar(y, z);
}
private static void normalizeToAffine(PointProjective p, PointAffine r)
{
F.inv(p.z, r.y);
F.mul(r.y, p.x, r.x);
F.mul(r.y, p.y, r.y);
F.normalize(r.x);
F.normalize(r.y);
}
private static boolean normalizeToNeutralElementVar(PointProjective p)
{
F.normalize(p.x);
F.normalize(p.y);
F.normalize(p.z);
return isNeutralElementVar(p.x, p.y, p.z);
}
private static void pointAdd(PointAffine p, PointProjective r, PointTemp t)
{
int[] b = t.r1;
int[] c = t.r2;
int[] d = t.r3;
int[] e = t.r4;
int[] f = t.r5;
int[] g = t.r6;
int[] h = t.r7;
F.sqr(r.z, b);
F.mul(p.x, r.x, c);
F.mul(p.y, r.y, d);
F.mul(c, d, e);
F.mul(e, -C_d, e);
// F.apm(b, e, f, g);
F.add(b, e, f);
F.sub(b, e, g);
F.add(p.y, p.x, h);
F.add(r.y, r.x, e);
F.mul(h, e, h);
// F.apm(d, c, b, e);
F.add(d, c, b);
F.sub(d, c, e);
F.carry(b);
F.sub(h, b, h);
F.mul(h, r.z, h);
F.mul(e, r.z, e);
F.mul(f, h, r.x);
F.mul(e, g, r.y);
F.mul(f, g, r.z);
}
private static void pointAdd(PointProjective p, PointProjective r, PointTemp t)
{
int[] a = t.r0;
int[] b = t.r1;
int[] c = t.r2;
int[] d = t.r3;
int[] e = t.r4;
int[] f = t.r5;
int[] g = t.r6;
int[] h = t.r7;
F.mul(p.z, r.z, a);
F.sqr(a, b);
F.mul(p.x, r.x, c);
F.mul(p.y, r.y, d);
F.mul(c, d, e);
F.mul(e, -C_d, e);
// F.apm(b, e, f, g);
F.add(b, e, f);
F.sub(b, e, g);
F.add(p.y, p.x, h);
F.add(r.y, r.x, e);
F.mul(h, e, h);
// F.apm(d, c, b, e);
F.add(d, c, b);
F.sub(d, c, e);
F.carry(b);
F.sub(h, b, h);
F.mul(h, a, h);
F.mul(e, a, e);
F.mul(f, h, r.x);
F.mul(e, g, r.y);
F.mul(f, g, r.z);
}
private static void pointAddVar(boolean negate, PointAffine p, PointProjective r, PointTemp t)
{
int[] b = t.r1;
int[] c = t.r2;
int[] d = t.r3;
int[] e = t.r4;
int[] f = t.r5;
int[] g = t.r6;
int[] h = t.r7;
int[] nb, ne, nf, ng;
if (negate)
{
nb = e; ne = b; nf = g; ng = f;
F.sub(p.y, p.x, h);
}
else
{
nb = b; ne = e; nf = f; ng = g;
F.add(p.y, p.x, h);
}
F.sqr(r.z, b);
F.mul(p.x, r.x, c);
F.mul(p.y, r.y, d);
F.mul(c, d, e);
F.mul(e, -C_d, e);
// F.apm(b, e, nf, ng);
F.add(b, e, nf);
F.sub(b, e, ng);
F.add(r.y, r.x, e);
F.mul(h, e, h);
// F.apm(d, c, nb, e);
F.add(d, c, nb);
F.sub(d, c, ne);
F.carry(nb);
F.sub(h, b, h);
F.mul(h, r.z, h);
F.mul(e, r.z, e);
F.mul(f, h, r.x);
F.mul(e, g, r.y);
F.mul(f, g, r.z);
}
private static void pointAddVar(boolean negate, PointProjective p, PointProjective r, PointTemp t)
{
int[] a = t.r0;
int[] b = t.r1;
int[] c = t.r2;
int[] d = t.r3;
int[] e = t.r4;
int[] f = t.r5;
int[] g = t.r6;
int[] h = t.r7;
int[] nb, ne, nf, ng;
if (negate)
{
nb = e; ne = b; nf = g; ng = f;
F.sub(p.y, p.x, h);
}
else
{
nb = b; ne = e; nf = f; ng = g;
F.add(p.y, p.x, h);
}
F.mul(p.z, r.z, a);
F.sqr(a, b);
F.mul(p.x, r.x, c);
F.mul(p.y, r.y, d);
F.mul(c, d, e);
F.mul(e, -C_d, e);
// F.apm(b, e, nf, ng);
F.add(b, e, nf);
F.sub(b, e, ng);
F.add(r.y, r.x, e);
F.mul(h, e, h);
// F.apm(d, c, nb, ne);
F.add(d, c, nb);
F.sub(d, c, ne);
F.carry(nb);
F.sub(h, b, h);
F.mul(h, a, h);
F.mul(e, a, e);
F.mul(f, h, r.x);
F.mul(e, g, r.y);
F.mul(f, g, r.z);
}
private static void pointCopy(PointAffine p, PointProjective r)
{
F.copy(p.x, 0, r.x, 0);
F.copy(p.y, 0, r.y, 0);
F.one(r.z);
}
private static void pointCopy(PointProjective p, PointProjective r)
{
F.copy(p.x, 0, r.x, 0);
F.copy(p.y, 0, r.y, 0);
F.copy(p.z, 0, r.z, 0);
}
private static void pointDouble(PointProjective r, PointTemp t)
{
int[] b = t.r1;
int[] c = t.r2;
int[] d = t.r3;
int[] e = t.r4;
int[] h = t.r7;
int[] j = t.r0;
F.add(r.x, r.y, b);
F.sqr(b, b);
F.sqr(r.x, c);
F.sqr(r.y, d);
F.add(c, d, e);
F.carry(e);
F.sqr(r.z, h);
F.add(h, h, h);
F.carry(h);
F.sub(e, h, j);
F.sub(b, e, b);
F.sub(c, d, c);
F.mul(b, j, r.x);
F.mul(e, c, r.y);
F.mul(e, j, r.z);
}
private static void pointLookup(int block, int index, PointAffine p)
{
// assert 0 <= block && block < PRECOMP_BLOCKS;
// assert 0 <= index && index < PRECOMP_POINTS;
int off = block * PRECOMP_POINTS * 2 * F.SIZE;
for (int i = 0; i < PRECOMP_POINTS; ++i)
{
int cond = ((i ^ index) - 1) >> 31;
F.cmov(cond, PRECOMP_BASE_COMB, off, p.x, 0); off += F.SIZE;
F.cmov(cond, PRECOMP_BASE_COMB, off, p.y, 0); off += F.SIZE;
}
}
private static void pointLookup(int[] x, int n, int[] table, PointProjective r)
{
// TODO This method is currently hardcoded to 4-bit windows and 8 precomputed points
int w = getWindow4(x, n);
int sign = (w >>> (4 - 1)) ^ 1;
int abs = (w ^ -sign) & 7;
// assert sign == 0 || sign == 1;
// assert 0 <= abs && abs < 8;
for (int i = 0, off = 0; i < 8; ++i)
{
int cond = ((i ^ abs) - 1) >> 31;
F.cmov(cond, table, off, r.x, 0); off += F.SIZE;
F.cmov(cond, table, off, r.y, 0); off += F.SIZE;
F.cmov(cond, table, off, r.z, 0); off += F.SIZE;
}
F.cnegate(sign, r.x);
}
private static void pointLookup15(int[] table, PointProjective r)
{
int off = F.SIZE * 3 * 7;
F.copy(table, off, r.x, 0); off += F.SIZE;
F.copy(table, off, r.y, 0); off += F.SIZE;
F.copy(table, off, r.z, 0);
}
private static int[] pointPrecompute(PointProjective p, int count, PointTemp t)
{
// assert count > 0;
PointProjective q = new PointProjective();
pointCopy(p, q);
PointProjective d = new PointProjective();
pointCopy(q, d);
pointDouble(d, t);
int[] table = F.createTable(count * 3);
int off = 0;
int i = 0;
for (;;)
{
F.copy(q.x, 0, table, off); off += F.SIZE;
F.copy(q.y, 0, table, off); off += F.SIZE;
F.copy(q.z, 0, table, off); off += F.SIZE;
if (++i == count)
{
break;
}
pointAdd(d, q, t);
}
return table;
}
private static void pointPrecompute(PointAffine p, PointProjective[] points, int pointsOff, int pointsLen,
PointTemp t)
{
// assert pointsLen > 0;
PointProjective d = new PointProjective();
pointCopy(p, d);
pointDouble(d, t);
points[pointsOff] = new PointProjective();
pointCopy(p, points[pointsOff]);
for (int i = 1; i < pointsLen; ++i)
{
points[pointsOff + i] = new PointProjective();
pointCopy(points[pointsOff + i - 1], points[pointsOff + i]);
pointAdd(d, points[pointsOff + i], t);
}
}
private static void pointSetNeutral(PointProjective p)
{
F.zero(p.x);
F.one(p.y);
F.one(p.z);
}
public static void precompute()
{
synchronized (PRECOMP_LOCK)
{
if (PRECOMP_BASE_COMB != null)
{
return;
}
// assert PRECOMP_RANGE > 448;
// assert PRECOMP_RANGE < 480;
int wnafPoints = 1 << (WNAF_WIDTH_BASE - 2);
int combPoints = PRECOMP_BLOCKS * PRECOMP_POINTS;
int totalPoints = wnafPoints * 2 + combPoints;
PointProjective[] points = new PointProjective[totalPoints];
PointTemp t = new PointTemp();
PointAffine B = new PointAffine();
F.copy(B_x, 0, B.x, 0);
F.copy(B_y, 0, B.y, 0);
pointPrecompute(B, points, 0, wnafPoints, t);
PointAffine B225 = new PointAffine();
F.copy(B225_x, 0, B225.x, 0);
F.copy(B225_y, 0, B225.y, 0);
pointPrecompute(B225, points, wnafPoints, wnafPoints, t);
PointProjective p = new PointProjective();
pointCopy(B, p);
int pointsIndex = wnafPoints * 2;
PointProjective[] toothPowers = new PointProjective[PRECOMP_TEETH];
for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth)
{
toothPowers[tooth] = new PointProjective();
}
for (int block = 0; block < PRECOMP_BLOCKS; ++block)
{
PointProjective sum = points[pointsIndex++] = new PointProjective();
for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth)
{
if (tooth == 0)
{
pointCopy(p, sum);
}
else
{
pointAdd(p, sum, t);
}
pointDouble(p, t);
pointCopy(p, toothPowers[tooth]);
if (block + tooth != PRECOMP_BLOCKS + PRECOMP_TEETH - 2)
{
for (int spacing = 1; spacing < PRECOMP_SPACING; ++spacing)
{
pointDouble(p, t);
}
}
}
F.negate(sum.x, sum.x);
for (int tooth = 0; tooth < (PRECOMP_TEETH - 1); ++tooth)
{
int size = 1 << tooth;
for (int j = 0; j < size; ++j, ++pointsIndex)
{
points[pointsIndex] = new PointProjective();
pointCopy(points[pointsIndex - size], points[pointsIndex]);
pointAdd(toothPowers[tooth], points[pointsIndex], t);
}
}
}
// assert pointsIndex == totalPoints;
invertZs(points);
PRECOMP_BASE_WNAF = new PointAffine[wnafPoints];
for (int i = 0; i < wnafPoints; ++i)
{
PointProjective q = points[i];
PointAffine r = PRECOMP_BASE_WNAF[i] = new PointAffine();
F.mul(q.x, q.z, r.x); F.normalize(r.x);
F.mul(q.y, q.z, r.y); F.normalize(r.y);
}
PRECOMP_BASE225_WNAF = new PointAffine[wnafPoints];
for (int i = 0; i < wnafPoints; ++i)
{
PointProjective q = points[wnafPoints + i];
PointAffine r = PRECOMP_BASE225_WNAF[i] = new PointAffine();
F.mul(q.x, q.z, r.x); F.normalize(r.x);
F.mul(q.y, q.z, r.y); F.normalize(r.y);
}
PRECOMP_BASE_COMB = F.createTable(combPoints * 2);
int off = 0;
for (int i = wnafPoints * 2; i < totalPoints; ++i)
{
PointProjective q = points[i];
F.mul(q.x, q.z, q.x); F.normalize(q.x);
F.mul(q.y, q.z, q.y); F.normalize(q.y);
F.copy(q.x, 0, PRECOMP_BASE_COMB, off); off += F.SIZE;
F.copy(q.y, 0, PRECOMP_BASE_COMB, off); off += F.SIZE;
}
// assert off == PRECOMP_BASE_COMB.length;
}
}
private static void pruneScalar(byte[] n, int nOff, byte[] r)
{
System.arraycopy(n, nOff, r, 0, SCALAR_BYTES - 1);
r[0] &= 0xFC;
r[SCALAR_BYTES - 2] |= 0x80;
r[SCALAR_BYTES - 1] = 0x00;
}
private static void scalarMult(byte[] k, PointProjective p, PointProjective r)
{
int[] n = new int[SCALAR_INTS + 1];
Scalar448.decode(k, n);
Scalar448.toSignedDigits(449, n, n);
// NOTE: Bit 448 is handled explicitly by an initial addition
// assert n[SCALAR_INTS] == 1;
PointProjective q = new PointProjective();
PointTemp t = new PointTemp();
int[] table = pointPrecompute(p, 8, t);
// Replace first 4 doublings (2^4 * P) with 1 addition (P + 15 * P)
pointLookup15(table, r);
pointAdd(p, r, t);
int w = 111;
for (;;)
{
pointLookup(n, w, table, q);
pointAdd(q, r, t);
if (--w < 0)
{
break;
}
for (int i = 0; i < 4; ++i)
{
pointDouble(r, t);
}
}
}
private static void scalarMultBase(byte[] k, PointProjective r)
{
// Equivalent (but much slower)
// PointProjective p = new PointProjective();
// F.copy(B_x, 0, p.x, 0);
// F.copy(B_y, 0, p.y, 0);
// F.one(p.z);
// scalarMult(k, p, r);
precompute();
int[] n = new int[SCALAR_INTS + 1];
Scalar448.decode(k, n);
Scalar448.toSignedDigits(PRECOMP_RANGE, n, n);
PointAffine p = new PointAffine();
PointTemp t = new PointTemp();
pointSetNeutral(r);
int cOff = PRECOMP_SPACING - 1;
for (;;)
{
int tPos = cOff;
for (int block = 0; block < PRECOMP_BLOCKS; ++block)
{
int w = 0;
for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth)
{
int tBit = n[tPos >>> 5] >>> (tPos & 0x1F);
w &= ~(1 << tooth);
w ^= (tBit << tooth);
tPos += PRECOMP_SPACING;
}
int sign = (w >>> (PRECOMP_TEETH - 1)) & 1;
int abs = (w ^ -sign) & PRECOMP_MASK;
// assert sign == 0 || sign == 1;
// assert 0 <= abs && abs < PRECOMP_POINTS;
pointLookup(block, abs, p);
F.cnegate(sign, p.x);
pointAdd(p, r, t);
}
if (--cOff < 0)
{
break;
}
pointDouble(r, t);
}
}
private static void scalarMultBaseEncoded(byte[] k, byte[] r, int rOff)
{
PointProjective p = new PointProjective();
scalarMultBase(k, p);
if (0 == encodeResult(p, r, rOff))
{
throw new IllegalStateException();
}
}
/**
* NOTE: Only for use by X448
*/
public static void scalarMultBaseXY(X448.Friend friend, byte[] k, int kOff, int[] x, int[] y)
{
if (null == friend)
{
throw new NullPointerException("This method is only for use by X448");
}
byte[] n = new byte[SCALAR_BYTES];
pruneScalar(k, kOff, n);
PointProjective p = new PointProjective();
scalarMultBase(n, p);
if (0 == checkPoint(p))
{
throw new IllegalStateException();
}
F.copy(p.x, 0, x, 0);
F.copy(p.y, 0, y, 0);
}
private static void scalarMultOrderVar(PointAffine p, PointProjective r)
{
byte[] ws_p = new byte[447];
// NOTE: WNAF_WIDTH_225 because of the special structure of the order
Scalar448.getOrderWnafVar(WNAF_WIDTH_225, ws_p);
int count = 1 << (WNAF_WIDTH_225 - 2);
PointProjective[] tp = new PointProjective[count];
PointTemp t = new PointTemp();
pointPrecompute(p, tp, 0, count, t);
pointSetNeutral(r);
for (int bit = 446;;)
{
int wp = ws_p[bit];
if (wp != 0)
{
int index = (wp >> 1) ^ (wp >> 31);
pointAddVar(wp < 0, tp[index], r, t);
}
if (--bit < 0)
{
break;
}
pointDouble(r, t);
}
}
private static void scalarMultStraus225Var(int[] nb, int[] np, PointAffine p, int[] nq, PointAffine q,
PointProjective r)
{
// assert nb.length == SCALAR_INTS;
// assert nb[SCALAR_INTS - 1] >>> 30 == 0;
// assert np.length == 8;
// assert np[7] >> 31 == np[7];
// assert nq.length == 8;
// assert nq[7] >> 31 == nq[7];
precompute();
byte[] ws_b = new byte[450];
byte[] ws_p = new byte[225];
byte[] ws_q = new byte[225];
Wnaf.getSignedVar(nb, WNAF_WIDTH_BASE, ws_b);
Wnaf.getSignedVar(np, WNAF_WIDTH_225, ws_p);
Wnaf.getSignedVar(nq, WNAF_WIDTH_225, ws_q);
int count = 1 << (WNAF_WIDTH_225 - 2);
PointProjective[] tp = new PointProjective[count];
PointProjective[] tq = new PointProjective[count];
PointTemp t = new PointTemp();
pointPrecompute(p, tp, 0, count, t);
pointPrecompute(q, tq, 0, count, t);
pointSetNeutral(r);
int bit = 225;
while (--bit >= 0)
{
int wb = ws_b[bit];
if (wb != 0)
{
int index = (wb >> 1) ^ (wb >> 31);
pointAddVar(wb < 0, PRECOMP_BASE_WNAF[index], r, t);
}
int wb225 = ws_b[225 + bit];
if (wb225 != 0)
{
int index = (wb225 >> 1) ^ (wb225 >> 31);
pointAddVar(wb225 < 0, PRECOMP_BASE225_WNAF[index], r, t);
}
int wp = ws_p[bit];
if (wp != 0)
{
int index = (wp >> 1) ^ (wp >> 31);
pointAddVar(wp < 0, tp[index], r, t);
}
int wq = ws_q[bit];
if (wq != 0)
{
int index = (wq >> 1) ^ (wq >> 31);
pointAddVar(wq < 0, tq[index], r, t);
}
pointDouble(r, t);
}
// NOTE: Together with the final pointDouble of the loop, this clears the cofactor of 4
pointDouble(r, t);
}
public static void sign(byte[] sk, int skOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
byte phflag = 0x00;
implSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen,
byte[] sig, int sigOff)
{
byte phflag = 0x00;
implSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void signPrehash(byte[] sk, int skOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff)
{
byte phflag = 0x01;
implSign(sk, skOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff);
}
public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff,
byte[] sig, int sigOff)
{
byte phflag = 0x01;
implSign(sk, skOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff);
}
public static void signPrehash(byte[] sk, int skOff, byte[] ctx, Xof ph, byte[] sig, int sigOff)
{
byte[] m = new byte[PREHASH_SIZE];
if (PREHASH_SIZE != ph.doFinal(m, 0, PREHASH_SIZE))
{
throw new IllegalArgumentException("ph");
}
byte phflag = 0x01;
implSign(sk, skOff, ctx, phflag, m, 0, m.length, sig, sigOff);
}
public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, Xof ph, byte[] sig,
int sigOff)
{
byte[] m = new byte[PREHASH_SIZE];
if (PREHASH_SIZE != ph.doFinal(m, 0, PREHASH_SIZE))
{
throw new IllegalArgumentException("ph");
}
byte phflag = 0x01;
implSign(sk, skOff, pk, pkOff, ctx, phflag, m, 0, m.length, sig, sigOff);
}
public static boolean validatePublicKeyFull(byte[] pk, int pkOff)
{
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointFullVar(A))
{
return false;
}
PointAffine pA = new PointAffine();
if (!decodePointVar(A, false, pA))
{
return false;
}
return checkPointOrderVar(pA);
}
public static PublicPoint validatePublicKeyFullExport(byte[] pk, int pkOff)
{
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointFullVar(A))
{
return null;
}
PointAffine pA = new PointAffine();
if (!decodePointVar(A, false, pA))
{
return null;
}
if (!checkPointOrderVar(pA))
{
return null;
}
return exportPoint(pA);
}
public static boolean validatePublicKeyPartial(byte[] pk, int pkOff)
{
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointFullVar(A))
{
return false;
}
PointAffine pA = new PointAffine();
return decodePointVar(A, false, pA);
}
public static PublicPoint validatePublicKeyPartialExport(byte[] pk, int pkOff)
{
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointFullVar(A))
{
return null;
}
PointAffine pA = new PointAffine();
if (!decodePointVar(A, false, pA))
{
return null;
}
return exportPoint(pA);
}
public static boolean verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen)
{
byte phflag = 0x00;
return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen);
}
public static boolean verify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte[] m, int mOff,
int mLen)
{
byte phflag = 0x00;
return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, mOff, mLen);
}
public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff)
{
byte phflag = 0x01;
return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE);
}
public static boolean verifyPrehash(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte[] ph,
int phOff)
{
byte phflag = 0x01;
return implVerify(sig, sigOff, publicPoint, ctx, phflag, ph, phOff, PREHASH_SIZE);
}
public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, Xof ph)
{
byte[] m = new byte[PREHASH_SIZE];
if (PREHASH_SIZE != ph.doFinal(m, 0, PREHASH_SIZE))
{
throw new IllegalArgumentException("ph");
}
byte phflag = 0x01;
return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, 0, m.length);
}
public static boolean verifyPrehash(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, Xof ph)
{
byte[] m = new byte[PREHASH_SIZE];
if (PREHASH_SIZE != ph.doFinal(m, 0, PREHASH_SIZE))
{
throw new IllegalArgumentException("ph");
}
byte phflag = 0x01;
return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, 0, m.length);
}
}