org.bouncycastle.pqc.crypto.falcon.FalconSign Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk18on Show documentation
Show all versions of bcprov-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up.
package org.bouncycastle.pqc.crypto.falcon;
class FalconSign
{
FPREngine fpr;
FalconFFT fft;
FalconCommon common;
FalconSign()
{
this.fpr = new FPREngine();
this.fft = new FalconFFT();
this.common = new FalconCommon();
}
private static int MKN(int logn)
{
return 1 << logn;
}
/*
* Binary case:
* N = 2^logn
* phi = X^N+1
*/
/*
* Get the size of the LDL tree for an input with polynomials of size
* 2^logn. The size is expressed in the number of elements.
*/
int ffLDL_treesize(int logn)
{
/*
* For logn = 0 (polynomials are constant), the "tree" is a
* single element. Otherwise, the tree node has size 2^logn, and
* has two child trees for size logn-1 each. Thus, treesize s()
* must fulfill these two relations:
*
* s(0) = 1
* s(logn) = (2^logn) + 2*s(logn-1)
*/
return (logn + 1) << logn;
}
/*
* Inner function for ffLDL_fft(). It expects the matrix to be both
* auto-adjoint and quasicyclic; also, it uses the source operands
* as modifiable temporaries.
*
* tmp[] must have room for at least one polynomial.
*/
void ffLDL_fft_inner(FalconFPR[] srctree, int tree,
FalconFPR[] srcg0, int g0, FalconFPR[] srcg1, int g1,
int logn, FalconFPR[] srctmp, int tmp)
{
int n, hn;
n = MKN(logn);
if (n == 1)
{
srctree[tree + 0] = srcg0[g0 + 0];
return;
}
hn = n >> 1;
/*
* The LDL decomposition yields L (which is written in the tree)
* and the diagonal of D. Since d00 = g0, we just write d11
* into tmp.
*/
fft.poly_LDLmv_fft(srctmp, tmp, srctree, tree, srcg0, g0, srcg1, g1, srcg0, g0, logn);
/*
* Split d00 (currently in g0) and d11 (currently in tmp). We
* reuse g0 and g1 as temporary storage spaces:
* d00 splits into g1, g1+hn
* d11 splits into g0, g0+hn
*/
fft.poly_split_fft(srcg1, g1, srcg1, g1 + hn, srcg0, g0, logn);
fft.poly_split_fft(srcg0, g0, srcg0, g0 + hn, srctmp, tmp, logn);
/*
* Each split result is the first row of a new auto-adjoint
* quasicyclic matrix for the next recursive step.
*/
ffLDL_fft_inner(srctree, tree + n,
srcg1, g1, srcg1, g1 + hn, logn - 1, srctmp, tmp);
ffLDL_fft_inner(srctree, tree + n + ffLDL_treesize(logn - 1),
srcg0, g0, srcg0, g0 + hn, logn - 1, srctmp, tmp);
}
/*
* Compute the ffLDL tree of an auto-adjoint matrix G. The matrix
* is provided as three polynomials (FFT representation).
*
* The "tree" array is filled with the computed tree, of size
* (logn+1)*(2^logn) elements (see ffLDL_treesize()).
*
* Input arrays MUST NOT overlap, except possibly the three unmodified
* arrays g00, g01 and g11. tmp[] should have room for at least three
* polynomials of 2^logn elements each.
*/
void ffLDL_fft(FalconFPR[] srctree, int tree, FalconFPR[] srcg00, int g00,
FalconFPR[] srcg01, int g01, FalconFPR[] srcg11, int g11,
int logn, FalconFPR[] srctmp, int tmp)
{
int n, hn;
int d00, d11;
n = MKN(logn);
if (n == 1)
{
srctree[tree + 0] = srcg00[g00 + 0];
return;
}
hn = n >> 1;
d00 = tmp;
d11 = tmp + n;
tmp += n << 1;
// memcpy(d00, g00, n * sizeof *g00);
System.arraycopy(srcg00, g00, srctmp, d00, n);
fft.poly_LDLmv_fft(srctmp, d11, srctree, tree, srcg00, g00, srcg01, g01, srcg11, g11, logn);
fft.poly_split_fft(srctmp, tmp, srctmp, tmp + hn, srctmp, d00, logn);
fft.poly_split_fft(srctmp, d00, srctmp, d00 + hn, srctmp, d11, logn);
// memcpy(d11, tmp, n * sizeof *tmp);
System.arraycopy(srctmp, tmp, srctmp, d11, n);
ffLDL_fft_inner(srctree, tree + n,
srctmp, d11, srctmp, d11 + hn, logn - 1, srctmp, tmp);
ffLDL_fft_inner(srctree, tree + n + ffLDL_treesize(logn - 1),
srctmp, d00, srctmp, d00 + hn, logn - 1, srctmp, tmp);
}
/*
* Normalize an ffLDL tree: each leaf of value x is replaced with
* sigma / sqrt(x).
*/
void ffLDL_binary_normalize(FalconFPR[] srctree, int tree, int orig_logn, int logn)
{
/*
* TODO: make an iterative version.
*/
int n;
n = MKN(logn);
if (n == 1)
{
/*
* We actually store in the tree leaf the inverse of
* the value mandated by the specification: this
* saves a division both here and in the sampler.
*/
srctree[tree + 0] = fpr.fpr_mul(fpr.fpr_sqrt(srctree[tree + 0]), fpr.fpr_inv_sigma[orig_logn]);
}
else
{
ffLDL_binary_normalize(srctree, tree + n, orig_logn, logn - 1);
ffLDL_binary_normalize(srctree, tree + n + ffLDL_treesize(logn - 1),
orig_logn, logn - 1);
}
}
/* =================================================================== */
/*
* Convert an integer polynomial (with small values) into the
* representation with complex numbers.
*/
void smallints_to_fpr(FalconFPR[] srcr, int r, byte[] srct, int t, int logn)
{
int n, u;
n = MKN(logn);
for (u = 0; u < n; u++)
{
srcr[r + u] = fpr.fpr_of(srct[t + u]); // t is signed
}
}
/*
* The expanded private key contains:
* - The B0 matrix (four elements)
* - The ffLDL tree
*/
int skoff_b00(int logn)
{
// (void)logn;
return 0;
}
int skoff_b01(int logn)
{
return MKN(logn);
}
int skoff_b10(int logn)
{
return 2 * MKN(logn);
}
int skoff_b11(int logn)
{
return 3 * MKN(logn);
}
int skoff_tree(int logn)
{
return 4 * MKN(logn);
}
/* see inner.h */
void expand_privkey(FalconFPR[] srcexpanded_key, int expanded_key,
byte[] srcf, int f, byte[] srcg, int g,
byte[] srcF, int F, byte[] srcG, int G,
int logn, FalconFPR[] srctmp, int tmp)
{
int n;
int rf, rg, rF, rG;
int b00, b01, b10, b11;
int g00, g01, g11, gxx;
int tree;
n = MKN(logn);
b00 = expanded_key + skoff_b00(logn);
b01 = expanded_key + skoff_b01(logn);
b10 = expanded_key + skoff_b10(logn);
b11 = expanded_key + skoff_b11(logn);
tree = expanded_key + skoff_tree(logn);
/*
* We load the private key elements directly into the B0 matrix,
* since B0 = [[g, -f], [G, -F]].
*/
rf = b01;
rg = b00;
rF = b11;
rG = b10;
smallints_to_fpr(srcexpanded_key, rf, srcf, f, logn);
smallints_to_fpr(srcexpanded_key, rg, srcg, g, logn);
smallints_to_fpr(srcexpanded_key, rF, srcF, F, logn);
smallints_to_fpr(srcexpanded_key, rG, srcG, G, logn);
/*
* Compute the FFT for the key elements, and negate f and F.
*/
fft.FFT(srcexpanded_key, rf, logn);
fft.FFT(srcexpanded_key, rg, logn);
fft.FFT(srcexpanded_key, rF, logn);
fft.FFT(srcexpanded_key, rG, logn);
fft.poly_neg(srcexpanded_key, rf, logn);
fft.poly_neg(srcexpanded_key, rF, logn);
/*
* The Gram matrix is G = B·B*. Formulas are:
* g00 = b00*adj(b00) + b01*adj(b01)
* g01 = b00*adj(b10) + b01*adj(b11)
* g10 = b10*adj(b00) + b11*adj(b01)
* g11 = b10*adj(b10) + b11*adj(b11)
*
* For historical reasons, this implementation uses
* g00, g01 and g11 (upper triangle).
*/
g00 = tmp; // the b__ are in srcexpanded_key and g__ are int srctmp
g01 = g00 + n;
g11 = g01 + n;
gxx = g11 + n;
// memcpy(g00, b00, n * sizeof *b00);
System.arraycopy(srcexpanded_key, b00, srctmp, g00, n);
fft.poly_mulselfadj_fft(srctmp, g00, logn);
// memcpy(gxx, b01, n * sizeof *b01);
System.arraycopy(srcexpanded_key, b01, srctmp, gxx, n);
fft.poly_mulselfadj_fft(srctmp, gxx, logn);
fft.poly_add(srctmp, g00, srctmp, gxx, logn);
// memcpy(g01, b00, n * sizeof *b00);
System.arraycopy(srcexpanded_key, b00, srctmp, g01, n);
fft.poly_muladj_fft(srctmp, g01, srcexpanded_key, b10, logn);
// memcpy(gxx, b01, n * sizeof *b01);
System.arraycopy(srcexpanded_key, b01, srctmp, gxx, n);
fft.poly_muladj_fft(srctmp, gxx, srcexpanded_key, b11, logn);
fft.poly_add(srctmp, g01, srctmp, gxx, logn);
// memcpy(g11, b10, n * sizeof *b10);
System.arraycopy(srcexpanded_key, b10, srctmp, g11, n);
fft.poly_mulselfadj_fft(srctmp, g11, logn);
// memcpy(gxx, b11, n * sizeof *b11);
System.arraycopy(srcexpanded_key, b11, srctmp, gxx, n);
fft.poly_mulselfadj_fft(srctmp, gxx, logn);
fft.poly_add(srctmp, g11, srctmp, gxx, logn);
/*
* Compute the Falcon tree.
*/
ffLDL_fft(srcexpanded_key, tree, srctmp, g00, srctmp, g01, srctmp, g11, logn, srctmp, gxx);
/*
* Normalize tree.
*/
ffLDL_binary_normalize(srcexpanded_key, tree, logn, logn);
}
/*
* Perform Fast Fourier Sampling for target vector t. The Gram matrix
* is provided (G = [[g00, g01], [adj(g01), g11]]). The sampled vector
* is written over (t0,t1). The Gram matrix is modified as well. The
* tmp[] buffer must have room for four polynomials.
*/
void ffSampling_fft_dyntree(SamplerZ samp, SamplerCtx samp_ctx,
FalconFPR[] srct0, int t0, FalconFPR[] srct1, int t1,
FalconFPR[] srcg00, int g00, FalconFPR[] srcg01, int g01, FalconFPR[] srcg11, int g11,
int orig_logn, int logn, FalconFPR[] srctmp, int tmp)
{
int n, hn;
int z0, z1;
/*
* Deepest level: the LDL tree leaf value is just g00 (the
* array has length only 1 at this point); we normalize it
* with regards to sigma, then use it for sampling.
*/
if (logn == 0)
{
FalconFPR leaf;
leaf = srcg00[g00 + 0];
leaf = fpr.fpr_mul(fpr.fpr_sqrt(leaf), fpr.fpr_inv_sigma[orig_logn]);
srct0[t0 + 0] = fpr.fpr_of(samp.sample(samp_ctx, srct0[t0 + 0], leaf));
srct1[t1 + 0] = fpr.fpr_of(samp.sample(samp_ctx, srct1[t1 + 0], leaf));
return;
}
n = 1 << logn;
hn = n >> 1;
/*
* Decompose G into LDL. We only need d00 (identical to g00),
* d11, and l10; we do that in place.
*/
fft.poly_LDL_fft(srcg00, g00, srcg01, g01, srcg11, g11, logn);
/*
* Split d00 and d11 and expand them into half-size quasi-cyclic
* Gram matrices. We also save l10 in tmp[].
*/
fft.poly_split_fft(srctmp, tmp, srctmp, tmp + hn, srcg00, g00, logn);
// memcpy(g00, tmp, n * sizeof *tmp);
System.arraycopy(srctmp, tmp, srcg00, g00, n);
fft.poly_split_fft(srctmp, tmp, srctmp, tmp + hn, srcg11, g11, logn);
// memcpy(g11, tmp, n * sizeof *tmp);
System.arraycopy(srctmp, tmp, srcg11, g11, n);
// memcpy(tmp, g01, n * sizeof *g01);
System.arraycopy(srcg01, g01, srctmp, tmp, n);
// memcpy(g01, g00, hn * sizeof *g00);
System.arraycopy(srcg00, g00, srcg01, g01, hn);
// memcpy(g01 + hn, g11, hn * sizeof *g00);
System.arraycopy(srcg11, g11, srcg01, g01 + hn, hn);
/*
* The half-size Gram matrices for the recursive LDL tree
* building are now:
* - left sub-tree: g00, g00+hn, g01
* - right sub-tree: g11, g11+hn, g01+hn
* l10 is in tmp[].
*/
/*
* We split t1 and use the first recursive call on the two
* halves, using the right sub-tree. The result is merged
* back into tmp + 2*n.
*/
z1 = tmp + n;
fft.poly_split_fft(srctmp, z1, srctmp, z1 + hn, srct1, t1, logn);
ffSampling_fft_dyntree(samp, samp_ctx, srctmp, z1, srctmp, z1 + hn,
srcg11, g11, srcg11, g11 + hn, srcg01, g01 + hn, orig_logn, logn - 1, srctmp, z1 + n);
fft.poly_merge_fft(srctmp, tmp + (n << 1), srctmp, z1, srctmp, z1 + hn, logn);
/*
* Compute tb0 = t0 + (t1 - z1) * l10.
* At that point, l10 is in tmp, t1 is unmodified, and z1 is
* in tmp + (n << 1). The buffer in z1 is free.
*
* In the end, z1 is written over t1, and tb0 is in t0.
*/
// memcpy(z1, t1, n * sizeof *t1);
System.arraycopy(srct1, t1, srctmp, z1, n);
fft.poly_sub(srctmp, z1, srctmp, tmp + (n << 1), logn);
// memcpy(t1, tmp + (n << 1), n * sizeof *tmp);
System.arraycopy(srctmp, tmp + (n << 1), srct1, t1, n);
fft.poly_mul_fft(srctmp, tmp, srctmp, z1, logn);
fft.poly_add(srct0, t0, srctmp, tmp, logn);
/*
* Second recursive invocation, on the split tb0 (currently in t0)
* and the left sub-tree.
*/
z0 = tmp;
fft.poly_split_fft(srctmp, z0, srctmp, z0 + hn, srct0, t0, logn);
ffSampling_fft_dyntree(samp, samp_ctx, srctmp, z0, srctmp, z0 + hn,
srcg00, g00, srcg00, g00 + hn, srcg01, g01, orig_logn, logn - 1, srctmp, z0 + n);
fft.poly_merge_fft(srct0, t0, srctmp, z0, srctmp, z0 + hn, logn);
}
/*
* Perform Fast Fourier Sampling for target vector t and LDL tree T.
* tmp[] must have size for at least two polynomials of size 2^logn.
*/
void ffSampling_fft(SamplerZ samp, SamplerCtx samp_ctx,
FalconFPR[] srcz0, int z0, FalconFPR[] srcz1, int z1,
FalconFPR[] srctree, int tree,
FalconFPR[] srct0, int t0, FalconFPR[] srct1, int t1, int logn,
FalconFPR[] srctmp, int tmp)
{
int n, hn;
int tree0, tree1;
/*
* When logn == 2, we inline the last two recursion levels.
*/
if (logn == 2)
{
FalconFPR x0, x1, y0, y1, w0, w1, w2, w3, sigma;
FalconFPR a_re, a_im, b_re, b_im, c_re, c_im;
tree0 = tree + 4;
tree1 = tree + 8;
/*
* We split t1 into w*, then do the recursive invocation,
* with output in w*. We finally merge back into z1.
*/
a_re = srct1[t1 + 0];
a_im = srct1[t1 + 2];
b_re = srct1[t1 + 1];
b_im = srct1[t1 + 3];
c_re = fpr.fpr_add(a_re, b_re);
c_im = fpr.fpr_add(a_im, b_im);
w0 = fpr.fpr_half(c_re);
w1 = fpr.fpr_half(c_im);
c_re = fpr.fpr_sub(a_re, b_re);
c_im = fpr.fpr_sub(a_im, b_im);
w2 = fpr.fpr_mul(fpr.fpr_add(c_re, c_im), fpr.fpr_invsqrt8);
w3 = fpr.fpr_mul(fpr.fpr_sub(c_im, c_re), fpr.fpr_invsqrt8);
x0 = w2;
x1 = w3;
sigma = srctree[tree1 + 3];
w2 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
w3 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
a_re = fpr.fpr_sub(x0, w2);
a_im = fpr.fpr_sub(x1, w3);
b_re = srctree[tree1 + 0];
b_im = srctree[tree1 + 1];
c_re = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
c_im = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
x0 = fpr.fpr_add(c_re, w0);
x1 = fpr.fpr_add(c_im, w1);
sigma = srctree[tree1 + 2];
w0 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
w1 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
a_re = w0;
a_im = w1;
b_re = w2;
b_im = w3;
c_re = fpr.fpr_mul(fpr.fpr_sub(b_re, b_im), fpr.fpr_invsqrt2);
c_im = fpr.fpr_mul(fpr.fpr_add(b_re, b_im), fpr.fpr_invsqrt2);
srcz1[z1 + 0] = w0 = fpr.fpr_add(a_re, c_re);
srcz1[z1 + 2] = w2 = fpr.fpr_add(a_im, c_im);
srcz1[z1 + 1] = w1 = fpr.fpr_sub(a_re, c_re);
srcz1[z1 + 3] = w3 = fpr.fpr_sub(a_im, c_im);
/*
* Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in w*.
*/
w0 = fpr.fpr_sub(srct1[t1 + 0], w0);
w1 = fpr.fpr_sub(srct1[t1 + 1], w1);
w2 = fpr.fpr_sub(srct1[t1 + 2], w2);
w3 = fpr.fpr_sub(srct1[t1 + 3], w3);
a_re = w0;
a_im = w2;
b_re = srctree[tree + 0];
b_im = srctree[tree + 2];
w0 = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
w2 = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
a_re = w1;
a_im = w3;
b_re = srctree[tree + 1];
b_im = srctree[tree + 3];
w1 = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
w3 = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
w0 = fpr.fpr_add(w0, srct0[t0 + 0]);
w1 = fpr.fpr_add(w1, srct0[t0 + 1]);
w2 = fpr.fpr_add(w2, srct0[t0 + 2]);
w3 = fpr.fpr_add(w3, srct0[t0 + 3]);
/*
* Second recursive invocation.
*/
a_re = w0;
a_im = w2;
b_re = w1;
b_im = w3;
c_re = fpr.fpr_add(a_re, b_re);
c_im = fpr.fpr_add(a_im, b_im);
w0 = fpr.fpr_half(c_re);
w1 = fpr.fpr_half(c_im);
c_re = fpr.fpr_sub(a_re, b_re);
c_im = fpr.fpr_sub(a_im, b_im);
w2 = fpr.fpr_mul(fpr.fpr_add(c_re, c_im), fpr.fpr_invsqrt8);
w3 = fpr.fpr_mul(fpr.fpr_sub(c_im, c_re), fpr.fpr_invsqrt8);
x0 = w2;
x1 = w3;
sigma = srctree[tree0 + 3];
w2 = y0 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
w3 = y1 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
a_re = fpr.fpr_sub(x0, y0);
a_im = fpr.fpr_sub(x1, y1);
b_re = srctree[tree0 + 0];
b_im = srctree[tree0 + 1];
c_re = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
c_im = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
x0 = fpr.fpr_add(c_re, w0);
x1 = fpr.fpr_add(c_im, w1);
sigma = srctree[tree0 + 2];
w0 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
w1 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
a_re = w0;
a_im = w1;
b_re = w2;
b_im = w3;
c_re = fpr.fpr_mul(fpr.fpr_sub(b_re, b_im), fpr.fpr_invsqrt2);
c_im = fpr.fpr_mul(fpr.fpr_add(b_re, b_im), fpr.fpr_invsqrt2);
srcz0[z0 + 0] = fpr.fpr_add(a_re, c_re);
srcz0[z0 + 2] = fpr.fpr_add(a_im, c_im);
srcz0[z0 + 1] = fpr.fpr_sub(a_re, c_re);
srcz0[z0 + 3] = fpr.fpr_sub(a_im, c_im);
return;
}
/*
* Case logn == 1 is reachable only when using Falcon-2 (the
* smallest size for which Falcon is mathematically defined, but
* of course way too insecure to be of any use).
*/
if (logn == 1)
{
FalconFPR x0, x1, y0, y1, sigma;
FalconFPR a_re, a_im, b_re, b_im, c_re, c_im;
x0 = srct1[t1 + 0];
x1 = srct1[t1 + 1];
sigma = srctree[tree + 3];
srcz1[z1 + 0] = y0 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
srcz1[z1 + 1] = y1 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
a_re = fpr.fpr_sub(x0, y0);
a_im = fpr.fpr_sub(x1, y1);
b_re = srctree[tree + 0];
b_im = srctree[tree + 1];
c_re = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
c_im = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
x0 = fpr.fpr_add(c_re, srct0[t0 + 0]);
x1 = fpr.fpr_add(c_im, srct0[t0 + 1]);
sigma = srctree[tree + 2];
srcz0[z0 + 0] = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
srcz0[z0 + 1] = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
return;
}
/*
* Normal end of recursion is for logn == 0. Since the last
* steps of the recursions were inlined in the blocks above
* (when logn == 1 or 2), this case is not reachable, and is
* retained here only for documentation purposes.
if (logn == 0) {
fpr x0, x1, sigma;
x0 = t0[0];
x1 = t1[0];
sigma = tree[0];
z0[0] = fpr_of(samp(samp_ctx, x0, sigma));
z1[0] = fpr_of(samp(samp_ctx, x1, sigma));
return;
}
*/
/*
* General recursive case (logn >= 3).
*/
n = 1 << logn;
hn = n >> 1;
tree0 = tree + n;
tree1 = tree + n + ffLDL_treesize(logn - 1);
/*
* We split t1 into z1 (reused as temporary storage), then do
* the recursive invocation, with output in tmp. We finally
* merge back into z1.
*/
fft.poly_split_fft(srcz1, z1, srcz1, z1 + hn, srct1, t1, logn);
ffSampling_fft(samp, samp_ctx, srctmp, tmp, srctmp, tmp + hn,
srctree, tree1, srcz1, z1, srcz1, z1 + hn, logn - 1, srctmp, tmp + n);
fft.poly_merge_fft(srcz1, z1, srctmp, tmp, srctmp, tmp + hn, logn);
/*
* Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in tmp[].
*/
// memcpy(tmp, t1, n * sizeof *t1);
System.arraycopy(srct1, t1, srctmp, tmp, n);
fft.poly_sub(srctmp, tmp, srcz1, z1, logn);
fft.poly_mul_fft(srctmp, tmp, srctree, tree, logn);
fft.poly_add(srctmp, tmp, srct0, t0, logn);
/*
* Second recursive invocation.
*/
fft.poly_split_fft(srcz0, z0, srcz0, z0 + hn, srctmp, tmp, logn);
ffSampling_fft(samp, samp_ctx, srctmp, tmp, srctmp, tmp + hn,
srctree, tree0, srcz0, z0, srcz0, z0 + hn, logn - 1, srctmp, tmp + n);
fft.poly_merge_fft(srcz0, z0, srctmp, tmp, srctmp, tmp + hn, logn);
}
/*
* Compute a signature: the signature contains two vectors, s1 and s2.
* The s1 vector is not returned. The squared norm of (s1,s2) is
* computed, and if it is short enough, then s2 is returned into the
* s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is
* returned; the caller should then try again. This function uses an
* expanded key.
*
* tmp[] must have room for at least six polynomials.
*/
int do_sign_tree(SamplerZ samp, SamplerCtx samp_ctx, short[] srcs2, int s2,
FalconFPR[] srcexpanded_key, int expanded_key,
short[] srchm, int hm,
int logn, FalconFPR[] srctmp, int tmp)
{
int n, u;
int t0, t1, tx, ty;
int b00, b01, b10, b11, tree;
FalconFPR ni;
int sqn, ng;
short[] s1tmp, s2tmp;
n = MKN(logn);
t0 = tmp;
t1 = t0 + n;
b00 = expanded_key + skoff_b00(logn);
b01 = expanded_key + skoff_b01(logn);
b10 = expanded_key + skoff_b10(logn);
b11 = expanded_key + skoff_b11(logn);
tree = expanded_key + skoff_tree(logn);
/*
* Set the target vector to [hm, 0] (hm is the hashed message).
*/
for (u = 0; u < n; u++)
{
srctmp[t0 + u] = fpr.fpr_of(srchm[hm + u]);
/* This is implicit.
t1[u] = fpr_zero;
*/
}
/*
* Apply the lattice basis to obtain the real target
* vector (after normalization with regards to modulus).
*/
fft.FFT(srctmp, t0, logn);
ni = fpr.fpr_inverse_of_q;
// memcpy(t1, t0, n * sizeof *t0);
System.arraycopy(srctmp, t0, srctmp, t1, n);
fft.poly_mul_fft(srctmp, t1, srcexpanded_key, b01, logn);
fft.poly_mulconst(srctmp, t1, fpr.fpr_neg(ni), logn);
fft.poly_mul_fft(srctmp, t0, srcexpanded_key, b11, logn);
fft.poly_mulconst(srctmp, t0, ni, logn);
tx = t1 + n;
ty = tx + n;
/*
* Apply sampling. Output is written back in [tx, ty].
*/
ffSampling_fft(samp, samp_ctx, srctmp, tx, srctmp, ty, srcexpanded_key, tree,
srctmp, t0, srctmp, t1, logn, srctmp, ty + n);
/*
* Get the lattice point corresponding to that tiny vector.
*/
// memcpy(t0, tx, n * sizeof *tx);
System.arraycopy(srctmp, tx, srctmp, t0, n);
// memcpy(t1, ty, n * sizeof *ty);
System.arraycopy(srctmp, ty, srctmp, t1, n);
fft.poly_mul_fft(srctmp, tx, srcexpanded_key, b00, logn);
fft.poly_mul_fft(srctmp, ty, srcexpanded_key, b10, logn);
fft.poly_add(srctmp, tx, srctmp, ty, logn);
// memcpy(ty, t0, n * sizeof *t0);
System.arraycopy(srctmp, t0, srctmp, ty, n);
fft.poly_mul_fft(srctmp, ty, srcexpanded_key, b01, logn);
// memcpy(t0, tx, n * sizeof *tx);
System.arraycopy(srctmp, tx, srctmp, t0, n);
fft.poly_mul_fft(srctmp, t1, srcexpanded_key, b11, logn);
fft.poly_add(srctmp, t1, srctmp, ty, logn);
fft.iFFT(srctmp, t0, logn);
fft.iFFT(srctmp, t1, logn);
/*
* Compute the signature.
*/
s1tmp = new short[n];
sqn = 0;
ng = 0;
for (u = 0; u < n; u++)
{
int z;
// note: hm is unsigned
z = (srchm[hm + u] & 0xffff) - (int)fpr.fpr_rint(srctmp[t0 + u]);
sqn += (z * z);
ng |= sqn;
s1tmp[u] = (short)z;
}
sqn |= -(ng >>> 31);
/*
* With "normal" degrees (e.g. 512 or 1024), it is very
* improbable that the computed vector is not short enough;
* however, it may happen in practice for the very reduced
* versions (e.g. degree 16 or below). In that case, the caller
* will loop, and we must not write anything into s2[] because
* s2[] may overlap with the hashed message hm[] and we need
* hm[] for the next iteration.
*/
s2tmp = new short[n];
for (u = 0; u < n; u++)
{
s2tmp[u] = (short)-fpr.fpr_rint(srctmp[t1 + u]);
}
if (common.is_short_half(sqn, s2tmp, 0, logn) != 0)
{
// memcpy(s2, s2tmp, n * sizeof *s2);
System.arraycopy(s2tmp, 0, srcs2, s2, n);
// memcpy(tmp, s1tmp, n * sizeof *s1tmp);
System.arraycopy(s1tmp, 0, srctmp, tmp, n);
return 1;
}
return 0;
}
/*
* Compute a signature: the signature contains two vectors, s1 and s2.
* The s1 vector is not returned. The squared norm of (s1,s2) is
* computed, and if it is short enough, then s2 is returned into the
* s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is
* returned; the caller should then try again.
*
* tmp[] must have room for at least nine polynomials.
*/
int do_sign_dyn(SamplerZ samp, SamplerCtx samp_ctx, short[] srcs2, int s2,
byte[] srcf, int f, byte[] srcg, int g,
byte[] srcF, int F, byte[] srcG, int G,
short[] srchm, int hm, int logn, FalconFPR[] srctmp, int tmp)
{
int n, u;
int t0, t1, tx, ty;
int b00, b01, b10, b11, g00, g01, g11;
FalconFPR ni;
int sqn, ng;
short[] s1tmp, s2tmp;
n = MKN(logn);
/*
* Lattice basis is B = [[g, -f], [G, -F]]. We convert it to FFT.
*/
b00 = tmp;
b01 = b00 + n;
b10 = b01 + n;
b11 = b10 + n;
smallints_to_fpr(srctmp, b01, srcf, f, logn);
smallints_to_fpr(srctmp, b00, srcg, g, logn);
smallints_to_fpr(srctmp, b11, srcF, F, logn);
smallints_to_fpr(srctmp, b10, srcG, G, logn);
fft.FFT(srctmp, b01, logn);
fft.FFT(srctmp, b00, logn);
fft.FFT(srctmp, b11, logn);
fft.FFT(srctmp, b10, logn);
fft.poly_neg(srctmp, b01, logn);
fft.poly_neg(srctmp, b11, logn);
/*
* Compute the Gram matrix G = B·B*. Formulas are:
* g00 = b00*adj(b00) + b01*adj(b01)
* g01 = b00*adj(b10) + b01*adj(b11)
* g10 = b10*adj(b00) + b11*adj(b01)
* g11 = b10*adj(b10) + b11*adj(b11)
*
* For historical reasons, this implementation uses
* g00, g01 and g11 (upper triangle). g10 is not kept
* since it is equal to adj(g01).
*
* We _replace_ the matrix B with the Gram matrix, but we
* must keep b01 and b11 for computing the target vector.
*/
t0 = b11 + n;
t1 = t0 + n;
// memcpy(t0, b01, n * sizeof *b01);
System.arraycopy(srctmp, b01, srctmp, t0, n);
fft.poly_mulselfadj_fft(srctmp, t0, logn); // t0 <- b01*adj(b01)
// memcpy(t1, b00, n * sizeof *b00);
System.arraycopy(srctmp, b00, srctmp, t1, n);
fft.poly_muladj_fft(srctmp, t1, srctmp, b10, logn); // t1 <- b00*adj(b10)
fft.poly_mulselfadj_fft(srctmp, b00, logn); // b00 <- b00*adj(b00)
fft.poly_add(srctmp, b00, srctmp, t0, logn); // b00 <- g00
// memcpy(t0, b01, n * sizeof *b01);
System.arraycopy(srctmp, b01, srctmp, t0, n);
fft.poly_muladj_fft(srctmp, b01, srctmp, b11, logn); // b01 <- b01*adj(b11)
fft.poly_add(srctmp, b01, srctmp, t1, logn); // b01 <- g01
fft.poly_mulselfadj_fft(srctmp, b10, logn); // b10 <- b10*adj(b10)
// memcpy(t1, b11, n * sizeof *b11);
System.arraycopy(srctmp, b11, srctmp, t1, n);
fft.poly_mulselfadj_fft(srctmp, t1, logn); // t1 <- b11*adj(b11)
fft.poly_add(srctmp, b10, srctmp, t1, logn); // b10 <- g11
/*
* We rename variables to make things clearer. The three elements
* of the Gram matrix uses the first 3*n slots of tmp[], followed
* by b11 and b01 (in that order).
*/
g00 = b00;
g01 = b01;
g11 = b10;
b01 = t0;
t0 = b01 + n;
t1 = t0 + n;
/*
* Memory layout at that point:
* g00 g01 g11 b11 b01 t0 t1
*/
/*
* Set the target vector to [hm, 0] (hm is the hashed message).
*/
for (u = 0; u < n; u++)
{
srctmp[t0 + u] = fpr.fpr_of(srchm[hm + u]);
/* This is implicit.
t1[u] = fpr_zero;
*/
}
/*
* Apply the lattice basis to obtain the real target
* vector (after normalization with regards to modulus).
*/
fft.FFT(srctmp, t0, logn);
ni = fpr.fpr_inverse_of_q;
// memcpy(t1, t0, n * sizeof *t0);
System.arraycopy(srctmp, t0, srctmp, t1, n);
fft.poly_mul_fft(srctmp, t1, srctmp, b01, logn);
fft.poly_mulconst(srctmp, t1, fpr.fpr_neg(ni), logn);
fft.poly_mul_fft(srctmp, t0, srctmp, b11, logn);
fft.poly_mulconst(srctmp, t0, ni, logn);
/*
* b01 and b11 can be discarded, so we move back (t0,t1).
* Memory layout is now:
* g00 g01 g11 t0 t1
*/
// memcpy(b11, t0, n * 2 * sizeof *t0);
System.arraycopy(srctmp, t0, srctmp, b11, 2 * n);
t0 = g11 + n;
t1 = t0 + n;
/*
* Apply sampling; result is written over (t0,t1).
*/
ffSampling_fft_dyntree(samp, samp_ctx,
srctmp, t0, srctmp, t1,
srctmp, g00, srctmp, g01, srctmp, g11,
logn, logn, srctmp, t1 + n);
/*
* We arrange the layout back to:
* b00 b01 b10 b11 t0 t1
*
* We did not conserve the matrix basis, so we must recompute
* it now.
*/
b00 = tmp;
b01 = b00 + n;
b10 = b01 + n;
b11 = b10 + n;
// memmove(b11 + n, t0, n * 2 * sizeof *t0);
System.arraycopy(srctmp, t0, srctmp, b11 + n, n * 2);
t0 = b11 + n;
t1 = t0 + n;
smallints_to_fpr(srctmp, b01, srcf, f, logn);
smallints_to_fpr(srctmp, b00, srcg, g, logn);
smallints_to_fpr(srctmp, b11, srcF, F, logn);
smallints_to_fpr(srctmp, b10, srcG, G, logn);
fft.FFT(srctmp, b01, logn);
fft.FFT(srctmp, b00, logn);
fft.FFT(srctmp, b11, logn);
fft.FFT(srctmp, b10, logn);
fft.poly_neg(srctmp, b01, logn);
fft.poly_neg(srctmp, b11, logn);
tx = t1 + n;
ty = tx + n;
/*
* Get the lattice point corresponding to that tiny vector.
*/
// memcpy(tx, t0, n * sizeof *t0);
System.arraycopy(srctmp, t0, srctmp, tx, n);
// memcpy(ty, t1, n * sizeof *t1);
System.arraycopy(srctmp, t1, srctmp, ty, n);
fft.poly_mul_fft(srctmp, tx, srctmp, b00, logn);
fft.poly_mul_fft(srctmp, ty, srctmp, b10, logn);
fft.poly_add(srctmp, tx, srctmp, ty, logn);
// memcpy(ty, t0, n * sizeof *t0);
System.arraycopy(srctmp, t0, srctmp, ty, n);
fft.poly_mul_fft(srctmp, ty, srctmp, b01, logn);
// memcpy(t0, tx, n * sizeof *tx);
System.arraycopy(srctmp, tx, srctmp, t0, n);
fft.poly_mul_fft(srctmp, t1, srctmp, b11, logn);
fft.poly_add(srctmp, t1, srctmp, ty, logn);
fft.iFFT(srctmp, t0, logn);
fft.iFFT(srctmp, t1, logn);
s1tmp = new short[n];
sqn = 0;
ng = 0;
for (u = 0; u < n; u++)
{
int z;
z = (srchm[hm + u] & 0xffff) - (int)fpr.fpr_rint(srctmp[t0 + u]);
sqn += (z * z);
ng |= sqn;
s1tmp[u] = (short)z;
}
sqn |= -(ng >>> 31);
/*
* With "normal" degrees (e.g. 512 or 1024), it is very
* improbable that the computed vector is not short enough;
* however, it may happen in practice for the very reduced
* versions (e.g. degree 16 or below). In that case, the caller
* will loop, and we must not write anything into s2[] because
* s2[] may overlap with the hashed message hm[] and we need
* hm[] for the next iteration.
*/
s2tmp = new short[n];
for (u = 0; u < n; u++)
{
s2tmp[u] = (short)-fpr.fpr_rint(srctmp[t1 + u]);
}
if (common.is_short_half(sqn, s2tmp, 0, logn) != 0)
{
// memcpy(s2, s2tmp, n * sizeof *s2);
System.arraycopy(s2tmp, 0, srcs2, s2, n);
// memcpy(tmp, s1tmp, n * sizeof *s1tmp);
// System.arraycopy(s1tmp, 0, srctmp, tmp, n);
return 1;
}
return 0;
}
/* see inner.h */
void sign_tree(short[] srcsig, int sig, SHAKE256 rng,
FalconFPR[] srcexpanded_key, int expanded_key,
short[] srchm, int hm, int logn, FalconFPR[] srctmp, int tmp)
{
int ftmp;
ftmp = tmp;
for (; ; )
{
/*
* Signature produces short vectors s1 and s2. The
* signature is acceptable only if the aggregate vector
* s1,s2 is short; we must use the same bound as the
* verifier.
*
* If the signature is acceptable, then we return only s2
* (the verifier recomputes s1 from s2, the hashed message,
* and the public key).
*/
SamplerCtx spc = new SamplerCtx();
SamplerZ samp = new SamplerZ();
SamplerCtx samp_ctx;
/*
* Normal sampling. We use a fast PRNG seeded from our
* SHAKE context ('rng').
*/
spc.sigma_min = fpr.fpr_sigma_min[logn];
spc.p.prng_init(rng);
samp_ctx = spc;
/*
* Do the actual signature.
*/
if (do_sign_tree(samp, samp_ctx, srcsig, sig,
srcexpanded_key, expanded_key, srchm, hm, logn, srctmp, ftmp) != 0)
{
break;
}
}
}
/* see inner.h */
void sign_dyn(short[] srcsig, int sig, SHAKE256 rng,
byte[] srcf, int f, byte[] srcg, int g,
byte[] srcF, int F, byte[] srcG, int G,
short[] srchm, int hm, int logn, FalconFPR[] srctmp, int tmp)
{
int ftmp;
ftmp = tmp;
for (; ; )
{
/*
* Signature produces short vectors s1 and s2. The
* signature is acceptable only if the aggregate vector
* s1,s2 is short; we must use the same bound as the
* verifier.
*
* If the signature is acceptable, then we return only s2
* (the verifier recomputes s1 from s2, the hashed message,
* and the public key).
*/
SamplerCtx spc = new SamplerCtx();
SamplerZ samp = new SamplerZ();
SamplerCtx samp_ctx;
/*
* Normal sampling. We use a fast PRNG seeded from our
* SHAKE context ('rng').
*/
spc.sigma_min = fpr.fpr_sigma_min[logn];
spc.p.prng_init(rng);
samp_ctx = spc;
/*
* Do the actual signature.
*/
if (do_sign_dyn(samp, samp_ctx, srcsig, sig,
srcf, f, srcg, g, srcF, F, srcG, G, srchm, hm, logn, srctmp, ftmp) != 0)
{
break;
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy