org.bouncycastle.pqc.crypto.hqc.HQCEngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-jdk18on Show documentation
Show all versions of bcprov-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up.
package org.bouncycastle.pqc.crypto.hqc;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Pack;
class HQCEngine
{
private int n;
private int n1;
private int n2;
private int k;
private int delta;
private int w;
private int wr;
private int we;
private int g;
private int rejectionThreshold;
private int fft;
private int mulParam;
private int SEED_SIZE = 40;
private byte G_FCT_DOMAIN = 3;
private byte H_FCT_DOMAIN = 4;
private byte K_FCT_DOMAIN = 5;
private int N_BYTE;
private int n1n2;
private int N_BYTE_64;
private int K_BYTE;
private int K_BYTE_64;
private int N1_BYTE_64;
private int N1N2_BYTE_64;
private int N1N2_BYTE;
private int N1_BYTE;
private int GF_POLY_WT = 5;
private int GF_POLY_M2 = 4;
private int SALT_SIZE_BYTES = 16;
private int SALT_SIZE_64 = 2;
private int[] generatorPoly;
private int SHA512_BYTES = 512 / 8;
private long RED_MASK;
private GF2PolynomialCalculator gfCalculator;
public HQCEngine(int n, int n1, int n2, int k, int g, int delta, int w, int wr, int we, int rejectionThreshold, int fft, int[] generatorPoly)
{
this.n = n;
this.k = k;
this.delta = delta;
this.w = w;
this.wr = wr;
this.we = we;
this.n1 = n1;
this.n2 = n2;
this.n1n2 = n1 * n2;
this.generatorPoly = generatorPoly;
this.g = g;
this.rejectionThreshold = rejectionThreshold;
this.fft = fft;
this.mulParam = (int)Math.ceil(n2 / 128);
this.N_BYTE = Utils.getByteSizeFromBitSize(n);
this.K_BYTE = k;
this.N_BYTE_64 = Utils.getByte64SizeFromBitSize(n);
this.K_BYTE_64 = Utils.getByteSizeFromBitSize(k);
this.N1_BYTE_64 = Utils.getByteSizeFromBitSize(n1);
this.N1N2_BYTE_64 = Utils.getByte64SizeFromBitSize(n1 * n2);
this.N1N2_BYTE = Utils.getByteSizeFromBitSize(n1 * n2);
this.N1_BYTE = Utils.getByteSizeFromBitSize(n1);
this.RED_MASK = ((1L << ((long)n % 64)) - 1);
this.gfCalculator = new GF2PolynomialCalculator(N_BYTE_64, n, RED_MASK);
}
/**
* Generate key pairs
* - Secret key : (x,y)
* - Public key: (h,s)
*
* @param pk output pk = (publicSeed||s)
**/
public void genKeyPair(byte[] pk, byte[] sk, byte[] seed)
{
// Randomly generate seeds for secret keys and public keys
byte[] secretKeySeed = new byte[SEED_SIZE];
KeccakRandomGenerator randomGenerator = new KeccakRandomGenerator(256);
randomGenerator.randomGeneratorInit(seed, null, seed.length, 0);
randomGenerator.squeeze(secretKeySeed, 40);
// 1. Randomly generate secret keys x, y
KeccakRandomGenerator secretKeySeedExpander = new KeccakRandomGenerator(256);
secretKeySeedExpander.seedExpanderInit(secretKeySeed, secretKeySeed.length);
long[] xLongBytes = new long[N_BYTE_64];
long[] yLongBytes = new long[N_BYTE_64];
generateRandomFixedWeight(xLongBytes, secretKeySeedExpander, w);
generateRandomFixedWeight(yLongBytes, secretKeySeedExpander, w);
// 2. Randomly generate h
byte[] publicKeySeed = new byte[SEED_SIZE];
randomGenerator.squeeze(publicKeySeed, 40);
KeccakRandomGenerator randomPublic = new KeccakRandomGenerator(256);
randomPublic.seedExpanderInit(publicKeySeed, publicKeySeed.length);
long[] hLongBytes = new long[N_BYTE_64];
generatePublicKeyH(hLongBytes, randomPublic);
// 3. Compute s
long[] s = new long[N_BYTE_64];
gfCalculator.multLongs(s, yLongBytes, hLongBytes);
GF2PolynomialCalculator.addLongs(s, s, xLongBytes);
byte[] sBytes = new byte[N_BYTE];
Utils.fromLongArrayToByteArray(sBytes, s);
byte[] tmpPk = Arrays.concatenate(publicKeySeed, sBytes);
byte[] tmpSk = Arrays.concatenate(secretKeySeed, tmpPk);
System.arraycopy(tmpPk, 0, pk, 0, tmpPk.length);
System.arraycopy(tmpSk, 0, sk, 0, tmpSk.length);
}
/**
* HQC Encapsulation
* - Input: pk, seed
* - Output: c = (u,v,d), K
*
* @param u u
* @param v v
* @param d d
* @param K session key
* @param pk public key
* @param seed seed
**/
public void encaps(byte[] u, byte[] v, byte[] K, byte[] d, byte[] pk, byte[] seed, byte[] salt)
{
// 1. Randomly generate m
byte[] m = new byte[K_BYTE];
byte[] secretKeySeed = new byte[SEED_SIZE];
KeccakRandomGenerator randomGenerator = new KeccakRandomGenerator(256);
randomGenerator.randomGeneratorInit(seed, null, seed.length, 0);
randomGenerator.squeeze(secretKeySeed, 40);
byte[] publicKeySeed = new byte[SEED_SIZE];
randomGenerator.squeeze(publicKeySeed, 40);
// gen m
randomGenerator.squeeze(m, K_BYTE);
// 2. Generate theta
byte[] theta = new byte[SHA512_BYTES];
byte[] tmp = new byte[K_BYTE + SEED_SIZE + SALT_SIZE_BYTES];
randomGenerator.squeeze(salt, SALT_SIZE_BYTES);
System.arraycopy(m, 0, tmp, 0, m.length);
System.arraycopy(pk, 0, tmp, K_BYTE, SEED_SIZE);
System.arraycopy(salt, 0, tmp, K_BYTE + SEED_SIZE, SALT_SIZE_BYTES);
KeccakRandomGenerator shakeDigest = new KeccakRandomGenerator(256);
shakeDigest.SHAKE256_512_ds(theta, tmp, tmp.length, new byte[]{G_FCT_DOMAIN});
// 3. Generate ciphertext c = (u,v)
// Extract public keys
long[] h = new long[N_BYTE_64];
byte[] s = new byte[N_BYTE];
extractPublicKeys(h, s, pk);
long[] vTmp = new long[N1N2_BYTE_64];
encrypt(u, vTmp, h, s, m, theta);
Utils.fromLongArrayToByteArray(v, vTmp);
// 4. Compute d
shakeDigest.SHAKE256_512_ds(d, m, m.length, new byte[]{H_FCT_DOMAIN});
// 5. Compute session key K
byte[] hashInputK = new byte[K_BYTE + N_BYTE + N1N2_BYTE];
hashInputK = Arrays.concatenate(m, u);
hashInputK = Arrays.concatenate(hashInputK, v);
shakeDigest.SHAKE256_512_ds(K, hashInputK, hashInputK.length, new byte[]{K_FCT_DOMAIN});
}
/**
* HQC Decapsulation
* - Input: ct, sk
* - Output: ss
*
* @param ss session key
* @param ct ciphertext
* @param sk secret key
**/
public void decaps(byte[] ss, byte[] ct, byte[] sk)
{
//Extract Y and Public Keys from sk
long[] x = new long[N_BYTE_64];
long[] y = new long[N_BYTE_64];
byte[] pk = new byte[40 + N_BYTE];
extractKeysFromSecretKeys(x, y, pk, sk);
// Extract u, v, d from ciphertext
byte[] u = new byte[N_BYTE];
byte[] v = new byte[N1N2_BYTE];
byte[] d = new byte[SHA512_BYTES];
byte[] salt = new byte[SALT_SIZE_BYTES];
extractCiphertexts(u, v, d, salt, ct);
// 1. Decrypt -> m'
byte[] mPrimeBytes = new byte[k];
decrypt(mPrimeBytes, mPrimeBytes, u, v, y);
// 2. Compute theta'
byte[] theta = new byte[SHA512_BYTES];
byte[] tmp = new byte[K_BYTE + SALT_SIZE_BYTES + SEED_SIZE];
System.arraycopy(mPrimeBytes, 0, tmp, 0, mPrimeBytes.length);
System.arraycopy(pk, 0, tmp, K_BYTE, SEED_SIZE);
System.arraycopy(salt, 0, tmp, K_BYTE + SEED_SIZE, SALT_SIZE_BYTES);
KeccakRandomGenerator shakeDigest = new KeccakRandomGenerator(256);
shakeDigest.SHAKE256_512_ds(theta, tmp, tmp.length, new byte[]{G_FCT_DOMAIN});
// 3. Compute c' = Enc(pk, m', theta')
// Extract public keys
long[] h = new long[N_BYTE_64];
byte[] s = new byte[N_BYTE];
extractPublicKeys(h, s, pk);
byte[] u2Bytes = new byte[N_BYTE];
byte[] v2Bytes = new byte[N1N2_BYTE];
long[] vTmp = new long[N1N2_BYTE_64];
encrypt(u2Bytes, vTmp, h, s, mPrimeBytes, theta);
Utils.fromLongArrayToByteArray(v2Bytes, vTmp);
// 4. Compute d' = H(m')
byte[] dPrime = new byte[SHA512_BYTES];
shakeDigest.SHAKE256_512_ds(dPrime, mPrimeBytes, mPrimeBytes.length, new byte[]{H_FCT_DOMAIN});
// 5. Compute session key KPrime
byte[] hashInputK = new byte[K_BYTE + N_BYTE + N1N2_BYTE];
hashInputK = Arrays.concatenate(mPrimeBytes, u);
hashInputK = Arrays.concatenate(hashInputK, v);
shakeDigest.SHAKE256_512_ds(ss, hashInputK, hashInputK.length, new byte[]{K_FCT_DOMAIN});
int result = 1;
// Compare u, v, d
if (!Arrays.areEqual(u, u2Bytes))
{
result = 0;
}
if (!Arrays.areEqual(v, v2Bytes))
{
result = 0;
}
if (!Arrays.areEqual(d, dPrime))
{
result = 0;
}
if (result == 0)
{ //abort
for (int i = 0; i < getSessionKeySize(); i++)
{
ss[i] = 0;
}
}
}
int getSessionKeySize()
{
return SHA512_BYTES;
}
/**
* HQC Encryption
* - Input: (h,s, m)
* - Output: (u,v) = c
*
* @param h public key
* @param s public key
* @param m message
* @param u ciphertext
* @param v ciphertext
**/
private void encrypt(byte[] u, long[] v, long[] h, byte[] s, byte[] m, byte[] theta)
{
// Randomly generate e, r1, r2
KeccakRandomGenerator randomGenerator = new KeccakRandomGenerator(256);
randomGenerator.seedExpanderInit(theta, SEED_SIZE);
long[] e = new long[N_BYTE_64];
long[] r1 = new long[N_BYTE_64];
long[] r2 = new long[N_BYTE_64];
generateRandomFixedWeight(r1, randomGenerator, wr);
generateRandomFixedWeight(r2, randomGenerator, wr);
generateRandomFixedWeight(e, randomGenerator, we);
// Calculate u
long[] uLong = new long[N_BYTE_64];
gfCalculator.multLongs(uLong, r2, h);
GF2PolynomialCalculator.addLongs(uLong, uLong, r1);
Utils.fromLongArrayToByteArray(u, uLong);
// Calculate v
// encode m
byte[] res = new byte[n1];
long[] vLong = new long[N1N2_BYTE_64];
long[] tmpVLong = new long[N_BYTE_64];
ReedSolomon.encode(res, m, K_BYTE * 8, n1, k, g, generatorPoly);
ReedMuller.encode(vLong, res, n1, mulParam);
System.arraycopy(vLong, 0, tmpVLong, 0, vLong.length);
//Compute v
long[] sLong = new long[N_BYTE_64];
Utils.fromByteArrayToLongArray(sLong, s);
long[] tmpLong = new long[N_BYTE_64];
gfCalculator.multLongs(tmpLong, r2, sLong);
GF2PolynomialCalculator.addLongs(tmpLong, tmpLong, tmpVLong);
GF2PolynomialCalculator.addLongs(tmpLong, tmpLong, e);
Utils.resizeArray(v, n1n2, tmpLong, n, N1N2_BYTE_64, N1N2_BYTE_64);
}
private void decrypt(byte[] output, byte[] m, byte[] u, byte[] v, long[] y)
{
long[] uLongs = new long[N_BYTE_64];
Utils.fromByteArrayToLongArray(uLongs, u);
long[] vLongs = new long[N1N2_BYTE_64];
Utils.fromByteArrayToLongArray(vLongs, v);
long[] tmpV = new long[N_BYTE_64];
System.arraycopy(vLongs, 0, tmpV, 0, vLongs.length);
long[] tmpLong = new long[N_BYTE_64];
gfCalculator.multLongs(tmpLong, y, uLongs);
GF2PolynomialCalculator.addLongs(tmpLong, tmpLong, tmpV);
// Decode res
byte[] tmp = new byte[n1];
ReedMuller.decode(tmp, tmpLong, n1, mulParam);
ReedSolomon.decode(m, tmp, n1, fft, delta, k, g);
System.arraycopy(m, 0, output, 0, output.length);
}
private void generateRandomFixedWeight(long[] output, KeccakRandomGenerator random, int weight)
{
int[] rand_u32 = new int[this.wr];
byte[] rand_bytes = new byte[this.wr * 4];
int[] support = new int[this.wr];
int[] index_tab = new int[this.wr];
long[] bit_tab = new long[this.wr];
random.expandSeed(rand_bytes, 4 * weight);
Pack.littleEndianToInt(rand_bytes, 0, rand_u32, 0, rand_u32.length);
for (int i = 0; i < weight; i++)
{
support[i] = (int) (i + ((rand_u32[i]&0xFFFFFFFFL) % (n - i)));
}
for (int i = (weight - 1); i >= 0; i--)
{
int found = 0;
for (int j = i + 1; j < weight; j++)
{
if (support[j] == support[i])
{
found |= 1;
}
}
int mask = -found;
support[i] = (mask & i) ^ (~mask & support[i]);
}
for (int i = 0; i < weight; i++)
{
index_tab[i] = support[i] >>> 6;
int pos = support[i] & 0x3f;
bit_tab[i] = (1L) << pos;
}
long val = 0;
for (int i = 0; i < N_BYTE_64; i++)
{
val = 0;
for (int j = 0; j < weight; j++)
{
int tmp = i - index_tab[j];
int val1 = 1 ^ ((tmp | -tmp) >>> 31);
long mask = -val1;
val |= (bit_tab[j] & mask);
}
output[i] |= val;
}
}
void generatePublicKeyH(long[] out, KeccakRandomGenerator random)
{
byte[] randBytes = new byte[N_BYTE];
random.expandSeed(randBytes, N_BYTE);
long[] tmp = new long[N_BYTE_64];
Utils.fromByteArrayToLongArray(tmp, randBytes);
tmp[N_BYTE_64 - 1] &= Utils.bitMask(n, 64);
System.arraycopy(tmp, 0, out, 0, out.length);
}
private void extractPublicKeys(long[] h, byte[] s, byte[] pk)
{
byte[] publicKeySeed = new byte[SEED_SIZE];
System.arraycopy(pk, 0, publicKeySeed, 0, publicKeySeed.length);
KeccakRandomGenerator randomPublic = new KeccakRandomGenerator(256);
randomPublic.seedExpanderInit(publicKeySeed, publicKeySeed.length);
long[] hLongBytes = new long[N_BYTE_64];
generatePublicKeyH(hLongBytes, randomPublic);
System.arraycopy(hLongBytes, 0, h, 0, h.length);
System.arraycopy(pk, 40, s, 0, s.length);
}
private void extractKeysFromSecretKeys(long[] x, long[] y, byte[] pk, byte[] sk)
{
byte[] secretKeySeed = new byte[SEED_SIZE];
System.arraycopy(sk, 0, secretKeySeed, 0, secretKeySeed.length);
// Randomly generate secret keys x, y
KeccakRandomGenerator secretKeySeedExpander = new KeccakRandomGenerator(256);
secretKeySeedExpander.seedExpanderInit(secretKeySeed, secretKeySeed.length);
generateRandomFixedWeight(x, secretKeySeedExpander, w);
generateRandomFixedWeight(y, secretKeySeedExpander, w);
System.arraycopy(sk, SEED_SIZE, pk, 0, pk.length);
}
private void extractCiphertexts(byte[] u, byte[] v, byte[] d, byte[] salt, byte[] ct)
{
System.arraycopy(ct, 0, u, 0, u.length);
System.arraycopy(ct, u.length, v, 0, v.length);
System.arraycopy(ct, u.length + v.length, d, 0, d.length);
System.arraycopy(ct, u.length + v.length + d.length, salt, 0, salt.length);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy