All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.crypto.rainbow.GF2Field Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.pqc.crypto.rainbow;

import org.bouncycastle.util.Pack;

/**
 * This class provides the basic operations like addition, multiplication and
 * finding the multiplicative inverse of an element in GF2^8.
 * 

* GF2^8 is implemented using the tower representation: * gf4 := gf2[x]/x^2+x+1 * gf16 := gf4[y]/y^2+y+x * gf256 := gf16[X]/X^2+X+xy */ class GF2Field { static final byte[][] gfMulTable = new byte[256][256]; static final byte[] gfInvTable = new byte[256]; static { { long p = 0x0101010101010101L; for (int i = 1; i <= 255; i++) { long q = 0x0706050403020100L; for (int j = 0; j < 256; j += 8) { long r = gf256Mul_64(p, q); Pack.longToLittleEndian(r, gfMulTable[i], j); q += 0x0808080808080808L; } p += 0x0101010101010101L; } } { long p = 0x0706050403020100L; for (int i = 0; i < 256; i += 8) { long r = gf256Inv_64(p); Pack.longToLittleEndian(r, gfInvTable, i); p += 0x0808080808080808L; } } } public static final int MASK = 0xff; private static short gf4Mul2(short a) { int r = a << 1; r ^= (a >>> 1) * 7; return (short)(r & MASK); } private static short gf4Mul3(short a) { int msk = (a - 2) >>> 1; int r = (msk & (a * 3)) | ((~msk) & (a - 1)); return (short)(r & MASK); } private static short gf4Mul(short a, short b) { int r = a * (b & 1); r ^= (gf4Mul2(a) * (b >>> 1)); return (short)(r & MASK); } private static short gf4Squ(short a) { int r = a ^ (a >>> 1); return (short)(r & MASK); } private static short gf16Mul(short a, short b) { short a0 = (short)((a & 3) & MASK); short a1 = (short)((a >>> 2) & MASK); short b0 = (short)((b & 3) & MASK); short b1 = (short)((b >>> 2) & MASK); short a0b0 = gf4Mul(a0, b0); short a1b1 = gf4Mul(a1, b1); short a0b1_a1b0 = (short)(gf4Mul((short)(a0 ^ a1), (short)(b0 ^ b1)) ^ a0b0); short a1b1_x2 = gf4Mul2(a1b1); return (short)(((a0b1_a1b0 << 2) ^ a0b0 ^ a1b1_x2) & MASK); } private static short gf16Squ(short a) { short a0 = (short)((a & 3) & MASK); short a1 = (short)((a >>> 2) & MASK); a1 = gf4Squ(a1); short a1squ_x2 = gf4Mul2(a1); return (short)(((a1 << 2) ^ a1squ_x2 ^ gf4Squ(a0)) & MASK); } private static short gf16Mul8(short a) { short a0 = (short)((a & 3) & MASK); short a1 = (short)((a >>> 2) & MASK); int r = gf4Mul2((short)(a0 ^ a1)) << 2; r |= gf4Mul3(a1); return (short)(r & MASK); } private static short gf256Mul(short a, short b) { short a0 = (short)((a & 15) & MASK); short a1 = (short)((a >>> 4) & MASK); short b0 = (short)((b & 15) & MASK); short b1 = (short)((b >>> 4) & MASK); short a0b0 = gf16Mul(a0, b0); short a1b1 = gf16Mul(a1, b1); short a0b1_a1b0 = (short)(gf16Mul((short)(a0 ^ a1), (short)(b0 ^ b1)) ^ a0b0); short a1b1_x2 = gf16Mul8(a1b1); return (short)(((a0b1_a1b0 << 4) ^ a0b0 ^ a1b1_x2) & MASK); } private static short gf256Squ(short a) { short a0 = (short)((a & 15) & MASK); short a1 = (short)((a >>> 4) & MASK); a1 = gf16Squ(a1); short a1squ_x8 = gf16Mul8(a1); return (short)(((a1 << 4) ^ a1squ_x8 ^ gf16Squ(a0)) & MASK); } private static short gf256Inv(short a) { // 128+64+32+16+8+4+2 = 254 short a2 = gf256Squ(a); short a4 = gf256Squ(a2); short a8 = gf256Squ(a4); short a4_2 = gf256Mul(a4, a2); short a8_4_2 = gf256Mul(a4_2, a8); short a64_ = gf256Squ(a8_4_2); a64_ = gf256Squ(a64_); a64_ = gf256Squ(a64_); short a64_2 = gf256Mul(a64_, a8_4_2); short a128_ = gf256Squ(a64_2); return gf256Mul(a2, a128_); } /** * This function calculates the sum of two elements as an operation in GF2^8 * * @param a the first element that is to be added * @param b the second element that should be added * @return the sum of the two elements a and b in GF2^8 */ public static short addElem(short a, short b) { return (short)(a ^ b); } public static long addElem_64(long a, long b) { return a ^ b; } /** * This function computes the multiplicative inverse of a given element in * GF2^8 The 0 has no multiplicative inverse and in this case 0 is returned. * * @param a the element which multiplicative inverse is to be computed * @return the multiplicative inverse of the given element, in case it * exists or 0, otherwise */ public static short invElem(short a) { // return gf256Inv(a); return (short)(gfInvTable[a] & 0xff); } public static long invElem_64(long a) { return gf256Inv_64(a); } /** * This function multiplies two elements in GF2^8. If one of the two * elements is 0, 0 is returned. * * @param a the first element to be multiplied. * @param b the second element to be multiplied. * @return the product of the two input elements in GF2^8. */ public static short multElem(short a, short b) { // return gf256Mul(a, b); return (short)(gfMulTable[a][b] & 0xff); } public static long multElem_64(long a, long b) { return gf256Mul_64(a, b); } // 64-bit parallel methods private static long gf4Mul2_64(long p) { long p0 = p & 0x5555555555555555L; long p1 = p & 0xAAAAAAAAAAAAAAAAL; return p1 ^ (p0 << 1) ^ (p1 >>> 1); } // private static long gf4Mul3_64(long p) // { // long p0 = p & 0x5555555555555555L; // long p1 = p & 0xAAAAAAAAAAAAAAAAL; // return p0 ^ (p0 << 1) ^ (p1 >>> 1); // } private static long gf4Mul_64(long p, long q) { long r1 = (((p << 1) & q) ^ ((q << 1) & p)) & 0xAAAAAAAAAAAAAAAAL; long r02 = p & q; return r02 ^ r1 ^ ((r02 & 0xAAAAAAAAAAAAAAAAL) >>> 1); } private static long gf4Squ_64(long p) { long p1 = p & 0xAAAAAAAAAAAAAAAAL; return p ^ (p1 >>> 1); } private static long gf16Mul_64(long p, long q) { long t = gf4Mul_64(p, q); long a0b0 = t & 0x3333333333333333L; long a1b1 = t & 0xCCCCCCCCCCCCCCCCL; long pk = (((p << 2) ^ p) & 0xCCCCCCCCCCCCCCCCL) ^ (a1b1 >>> 2); long qk = (((q << 2) ^ q) & 0xCCCCCCCCCCCCCCCCL) ^ 0x2222222222222222L; long v = gf4Mul_64(pk, qk); return v ^ (a0b0 << 2) ^ a0b0; } private static long gf16Squ_64(long p) { long t = gf4Squ_64(p); long u = gf4Mul2_64(t & 0xCCCCCCCCCCCCCCCCL); return t ^ (u >>> 2); } private static long gf16Mul8_64(long p) { long p0 = p & 0x3333333333333333L; long p1 = p & 0xCCCCCCCCCCCCCCCCL; long pk = (p0 << 2) ^ p1 ^ (p1 >>> 2); long t = gf4Mul2_64(pk); return t ^ (p1 >>> 2); } private static long gf256Mul_64(long p, long q) { long t = gf16Mul_64(p, q); long a0b0 = t & 0x0F0F0F0F0F0F0F0FL; long a1b1 = t & 0xF0F0F0F0F0F0F0F0L; long pk = (((p << 4) ^ p) & 0xF0F0F0F0F0F0F0F0L) ^ (a1b1 >>> 4); long qk = (((q << 4) ^ q) & 0xF0F0F0F0F0F0F0F0L) ^ 0x0808080808080808L; long v = gf16Mul_64(pk, qk); return v ^ (a0b0 << 4) ^ a0b0; } private static long gf256Squ_64(long p) { long t = gf16Squ_64(p); long a1Sq = t & 0xF0F0F0F0F0F0F0F0L; long a1squ_x8 = gf16Mul8_64(a1Sq); return t ^ (a1squ_x8 >>> 4); } private static long gf256Inv_64(long p) { long p2 = gf256Squ_64(p); long p4 = gf256Squ_64(p2); long p8 = gf256Squ_64(p4); long p4_2 = gf256Mul_64(p4, p2); long p8_4_2 = gf256Mul_64(p4_2, p8); long p64_ = gf256Squ_64(p8_4_2); p64_ = gf256Squ_64(p64_); p64_ = gf256Squ_64(p64_); long p64_2 = gf256Mul_64(p64_, p8_4_2); long p128_ = gf256Squ_64(p64_2); return gf256Mul_64(p2, p128_); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy