All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.SerpentEngineBase Maven / Gradle / Ivy

Go to download

The Long Term Stable (LTS) Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains the JCA/JCE provider and low-level API for the BC LTS version 2.73.7 for Java 8 and later.

There is a newer version: 2.73.7
Show newest version
package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicePurpose;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.KeyParameter;

public abstract class SerpentEngineBase
    implements BlockCipher
{
    protected static final int BLOCK_SIZE = 16;

    static final int ROUNDS = 32;
    static final int PHI = 0x9E3779B9;       // (sqrt(5) - 1) * 2**31

    protected boolean encrypting;
    protected int[] wKey;
    protected int keyBits;

    SerpentEngineBase()
    {
        CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), 256));
    }

    /**
     * initialise a Serpent cipher.
     *
     * @param encrypting whether or not we are for encryption.
     * @param params     the parameters required to set up the cipher.
     * @throws IllegalArgumentException if the params argument is
     * inappropriate.
     */
    public void init(
        boolean encrypting,
        CipherParameters params)
    {
        if (params instanceof KeyParameter)
        {
            this.encrypting = encrypting;
            byte[] keyBytes = ((KeyParameter)params).getKey();
            this.wKey = makeWorkingKey(keyBytes);

            CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), keyBytes.length * 8, params, getPurpose()));
            return;
        }

        throw new IllegalArgumentException("invalid parameter passed to " + getAlgorithmName() + " init - " + params.getClass().getName());
    }

    public String getAlgorithmName()
    {
        return "Serpent";
    }

    public int getBlockSize()
    {
        return BLOCK_SIZE;
    }

    /**
     * Process one block of input from the array in and write it to
     * the out array.
     *
     * @param in     the array containing the input data.
     * @param inOff  offset into the in array the data starts at.
     * @param out    the array the output data will be copied into.
     * @param outOff the offset into the out array the output will start at.
     * @return the number of bytes processed and produced.
     * @throws DataLengthException if there isn't enough data in in, or
     * space in out.
     * @throws IllegalStateException if the cipher isn't initialised.
     */
    public final int processBlock(
        byte[] in,
        int inOff,
        byte[] out,
        int outOff)
    {
        if (wKey == null)
        {
            throw new IllegalStateException(getAlgorithmName() + " not initialised");
        }

        if ((inOff + BLOCK_SIZE) > in.length)
        {
            throw new DataLengthException("input buffer too short");
        }

        if ((outOff + BLOCK_SIZE) > out.length)
        {
            throw new OutputLengthException("output buffer too short");
        }

        if (encrypting)
        {
            encryptBlock(in, inOff, out, outOff);
        }
        else
        {
            decryptBlock(in, inOff, out, outOff);
        }

        return BLOCK_SIZE;
    }

    public void reset()
    {
    }

    protected static int rotateLeft(
        int     x,
        int     bits)
    {
        return (x << bits) | (x >>> -bits);
    }

    protected static int rotateRight(
        int     x,
        int     bits)
    {
        return (x >>> bits) | (x << -bits);
    }

    /**
     * The sboxes below are based on the work of Brian Gladman and
     * Sam Simpson, whose original notice appears below.
     * 

* For further details see: * https://fp.gladman.plus.com/cryptography_technology/serpent/ */ /* Partially optimised Serpent S Box boolean functions derived */ /* using a recursive descent analyser but without a full search */ /* of all subtrees. This set of S boxes is the result of work */ /* by Sam Simpson and Brian Gladman using the spare time on a */ /* cluster of high capacity servers to search for S boxes with */ /* this customised search engine. There are now an average of */ /* 15.375 terms per S box. */ /* */ /* Copyright: Dr B. R Gladman ([email protected]) */ /* and Sam Simpson ([email protected]) */ /* 17th December 1998 */ /* */ /* We hereby give permission for information in this file to be */ /* used freely subject only to acknowledgement of its origin. */ /** * S0 - { 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 } - 15 terms. */ protected final void sb0(int[] X, int a, int b, int c, int d) { int t1 = a ^ d; int t3 = c ^ t1; int t4 = b ^ t3; X[3] = (a & d) ^ t4; int t7 = a ^ (b & t1); X[2] = t4 ^ (c | t7); int t12 = X[3] & (t3 ^ t7); X[1] = (~t3) ^ t12; X[0] = t12 ^ (~t7); } /** * InvSO - {13, 3,11, 0,10, 6, 5,12, 1,14, 4, 7,15, 9, 8, 2 } - 15 terms. */ protected final void ib0(int[] X, int a, int b, int c, int d) { int t1 = ~a; int t2 = a ^ b; int t4 = d ^ (t1 | t2); int t5 = c ^ t4; X[2] = t2 ^ t5; int t8 = t1 ^ (d & t2); X[1] = t4 ^ (X[2] & t8); X[3] = (a & t4) ^ (t5 | X[1]); X[0] = X[3] ^ (t5 ^ t8); } /** * S1 - {15,12, 2, 7, 9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 } - 14 terms. */ protected final void sb1(int[] X, int a, int b, int c, int d) { int t2 = b ^ (~a); int t5 = c ^ (a | t2); X[2] = d ^ t5; int t7 = b ^ (d | t2); int t8 = t2 ^ X[2]; X[3] = t8 ^ (t5 & t7); int t11 = t5 ^ t7; X[1] = X[3] ^ t11; X[0] = t5 ^ (t8 & t11); } /** * InvS1 - { 5, 8, 2,14,15, 6,12, 3,11, 4, 7, 9, 1,13,10, 0 } - 14 steps. */ protected final void ib1(int[] X, int a, int b, int c, int d) { int t1 = b ^ d; int t3 = a ^ (b & t1); int t4 = t1 ^ t3; X[3] = c ^ t4; int t7 = b ^ (t1 & t3); int t8 = X[3] | t7; X[1] = t3 ^ t8; int t10 = ~X[1]; int t11 = X[3] ^ t7; X[0] = t10 ^ t11; X[2] = t4 ^ (t10 | t11); } /** * S2 - { 8, 6, 7, 9, 3,12,10,15,13, 1,14, 4, 0,11, 5, 2 } - 16 terms. */ protected final void sb2(int[] X, int a, int b, int c, int d) { int t1 = ~a; int t2 = b ^ d; int t3 = c & t1; X[0] = t2 ^ t3; int t5 = c ^ t1; int t6 = c ^ X[0]; int t7 = b & t6; X[3] = t5 ^ t7; X[2] = a ^ ((d | t7) & (X[0] | t5)); X[1] = (t2 ^ X[3]) ^ (X[2] ^ (d | t1)); } /** * InvS2 - {12, 9,15, 4,11,14, 1, 2, 0, 3, 6,13, 5, 8,10, 7 } - 16 steps. */ protected final void ib2(int[] X, int a, int b, int c, int d) { int t1 = b ^ d; int t2 = ~t1; int t3 = a ^ c; int t4 = c ^ t1; int t5 = b & t4; X[0] = t3 ^ t5; int t7 = a | t2; int t8 = d ^ t7; int t9 = t3 | t8; X[3] = t1 ^ t9; int t11 = ~t4; int t12 = X[0] | X[3]; X[1] = t11 ^ t12; X[2] = (d & t11) ^ (t3 ^ t12); } /** * S3 - { 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 } - 16 terms. */ protected final void sb3(int[] X, int a, int b, int c, int d) { int t1 = a ^ b; int t2 = a & c; int t3 = a | d; int t4 = c ^ d; int t5 = t1 & t3; int t6 = t2 | t5; X[2] = t4 ^ t6; int t8 = b ^ t3; int t9 = t6 ^ t8; int t10 = t4 & t9; X[0] = t1 ^ t10; int t12 = X[2] & X[0]; X[1] = t9 ^ t12; X[3] = (b | d) ^ (t4 ^ t12); } /** * InvS3 - { 0, 9,10, 7,11,14, 6,13, 3, 5,12, 2, 4, 8,15, 1 } - 15 terms */ protected final void ib3(int[] X, int a, int b, int c, int d) { int t1 = a | b; int t2 = b ^ c; int t3 = b & t2; int t4 = a ^ t3; int t5 = c ^ t4; int t6 = d | t4; X[0] = t2 ^ t6; int t8 = t2 | t6; int t9 = d ^ t8; X[2] = t5 ^ t9; int t11 = t1 ^ t9; int t12 = X[0] & t11; X[3] = t4 ^ t12; X[1] = X[3] ^ (X[0] ^ t11); } /** * S4 - { 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 } - 15 terms. */ protected final void sb4(int[] X, int a, int b, int c, int d) { int t1 = a ^ d; int t2 = d & t1; int t3 = c ^ t2; int t4 = b | t3; X[3] = t1 ^ t4; int t6 = ~b; int t7 = t1 | t6; X[0] = t3 ^ t7; int t9 = a & X[0]; int t10 = t1 ^ t6; int t11 = t4 & t10; X[2] = t9 ^ t11; X[1] = (a ^ t3) ^ (t10 & X[2]); } /** * InvS4 - { 5, 0, 8, 3,10, 9, 7,14, 2,12,11, 6, 4,15,13, 1 } - 15 terms. */ protected final void ib4(int[] X, int a, int b, int c, int d) { int t1 = c | d; int t2 = a & t1; int t3 = b ^ t2; int t4 = a & t3; int t5 = c ^ t4; X[1] = d ^ t5; int t7 = ~a; int t8 = t5 & X[1]; X[3] = t3 ^ t8; int t10 = X[1] | t7; int t11 = d ^ t10; X[0] = X[3] ^ t11; X[2] = (t3 & t11) ^ (X[1] ^ t7); } /** * S5 - {15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 } - 16 terms. */ protected final void sb5(int[] X, int a, int b, int c, int d) { int t1 = ~a; int t2 = a ^ b; int t3 = a ^ d; int t4 = c ^ t1; int t5 = t2 | t3; X[0] = t4 ^ t5; int t7 = d & X[0]; int t8 = t2 ^ X[0]; X[1] = t7 ^ t8; int t10 = t1 | X[0]; int t11 = t2 | t7; int t12 = t3 ^ t10; X[2] = t11 ^ t12; X[3] = (b ^ t7) ^ (X[1] & t12); } /** * InvS5 - { 8,15, 2, 9, 4, 1,13,14,11, 6, 5, 3, 7,12,10, 0 } - 16 terms. */ protected final void ib5(int[] X, int a, int b, int c, int d) { int t1 = ~c; int t2 = b & t1; int t3 = d ^ t2; int t4 = a & t3; int t5 = b ^ t1; X[3] = t4 ^ t5; int t7 = b | X[3]; int t8 = a & t7; X[1] = t3 ^ t8; int t10 = a | d; int t11 = t1 ^ t7; X[0] = t10 ^ t11; X[2] = (b & t10) ^ (t4 | (a ^ c)); } /** * S6 - { 7, 2,12, 5, 8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 } - 15 terms. */ protected final void sb6(int[] X, int a, int b, int c, int d) { int t1 = ~a; int t2 = a ^ d; int t3 = b ^ t2; int t4 = t1 | t2; int t5 = c ^ t4; X[1] = b ^ t5; int t7 = t2 | X[1]; int t8 = d ^ t7; int t9 = t5 & t8; X[2] = t3 ^ t9; int t11 = t5 ^ t8; X[0] = X[2] ^ t11; X[3] = (~t5) ^ (t3 & t11); } /** * InvS6 - {15,10, 1,13, 5, 3, 6, 0, 4, 9,14, 7, 2,12, 8,11 } - 15 terms. */ protected final void ib6(int[] X, int a, int b, int c, int d) { int t1 = ~a; int t2 = a ^ b; int t3 = c ^ t2; int t4 = c | t1; int t5 = d ^ t4; X[1] = t3 ^ t5; int t7 = t3 & t5; int t8 = t2 ^ t7; int t9 = b | t8; X[3] = t5 ^ t9; int t11 = b | X[3]; X[0] = t8 ^ t11; X[2] = (d & t1) ^ (t3 ^ t11); } /** * S7 - { 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 } - 16 terms. */ protected final void sb7(int[] X, int a, int b, int c, int d) { int t1 = b ^ c; int t2 = c & t1; int t3 = d ^ t2; int t4 = a ^ t3; int t5 = d | t1; int t6 = t4 & t5; X[1] = b ^ t6; int t8 = t3 | X[1]; int t9 = a & t4; X[3] = t1 ^ t9; int t11 = t4 ^ t8; int t12 = X[3] & t11; X[2] = t3 ^ t12; X[0] = (~t11) ^ (X[3] & X[2]); } /** * InvS7 - { 3, 0, 6,13, 9,14,15, 8, 5,12,11, 7,10, 1, 4, 2 } - 17 terms. */ protected final void ib7(int[] X, int a, int b, int c, int d) { int t3 = c | (a & b); int t4 = d & (a | b); X[3] = t3 ^ t4; int t6 = ~d; int t7 = b ^ t4; int t9 = t7 | (X[3] ^ t6); X[1] = a ^ t9; X[0] = (c ^ t7) ^ (d | X[1]); X[2] = (t3 ^ X[1]) ^ (X[0] ^ (a & X[3])); } /** * Apply the linear transformation to the register set. */ protected final void LT(int[] X) { int x0 = rotateLeft(X[0], 13); int x2 = rotateLeft(X[2], 3); int x1 = X[1] ^ x0 ^ x2 ; int x3 = X[3] ^ x2 ^ x0 << 3; X[1] = rotateLeft(x1, 1); X[3] = rotateLeft(x3, 7); X[0] = rotateLeft(x0 ^ X[1] ^ X[3], 5); X[2] = rotateLeft(x2 ^ X[3] ^ (X[1] << 7), 22); } /** * Apply the inverse of the linear transformation to the register set. */ protected final void inverseLT(int[] X) { int x2 = rotateRight(X[2], 22) ^ X[3] ^ (X[1] << 7); int x0 = rotateRight(X[0], 5) ^ X[1] ^ X[3]; int x3 = rotateRight(X[3], 7); int x1 = rotateRight(X[1], 1); X[3] = x3 ^ x2 ^ x0 << 3; X[1] = x1 ^ x0 ^ x2; X[2] = rotateRight(x2, 3); X[0] = rotateRight(x0, 13); } protected abstract int[] makeWorkingKey(byte[] key); protected abstract void encryptBlock(byte[] input, int inOff, byte[] output, int outOff); protected abstract void decryptBlock(byte[] input, int inOff, byte[] output, int outOff); // Service Definitions private CryptoServicePurpose getPurpose() { if (wKey == null) { return CryptoServicePurpose.ANY; } return encrypting ? CryptoServicePurpose.ENCRYPTION : CryptoServicePurpose.DECRYPTION; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy