All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.modes.kgcm.KGCMUtil_256 Maven / Gradle / Ivy

Go to download

The Long Term Stable (LTS) Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains the JCA/JCE provider and low-level API for the BC LTS version 2.73.7 for Java 8 and later.

There is a newer version: 2.73.7
Show newest version
package org.bouncycastle.crypto.modes.kgcm;

import org.bouncycastle.math.raw.Interleave;

/**
 * Utilities for the GF(2^m) field with corresponding extension polynomial:
 * 
 * GF (2^256) -> x^256 + x^10 + x^5 + x^2 + 1
 * 
* The representation is little-endian arrays of 64-bit words */ public class KGCMUtil_256 { public static final int SIZE = 4; public static void add(long[] x, long[] y, long[] z) { z[0] = x[0] ^ y[0]; z[1] = x[1] ^ y[1]; z[2] = x[2] ^ y[2]; z[3] = x[3] ^ y[3]; } public static void copy(long[] x, long[] z) { z[0] = x[0]; z[1] = x[1]; z[2] = x[2]; z[3] = x[3]; } public static boolean equal(long[] x, long[] y) { long d = 0L; d |= x[0] ^ y[0]; d |= x[1] ^ y[1]; d |= x[2] ^ y[2]; d |= x[3] ^ y[3]; return d == 0L; } public static void multiply(long[] x, long[] y, long[] z) { long x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3]; long y0 = y[0], y1 = y[1], y2 = y[2], y3 = y[3]; long z0 = 0, z1 = 0, z2 = 0, z3 = 0, z4 = 0; for (int j = 0; j < 64; ++j) { long m0 = -(x0 & 1L); x0 >>>= 1; z0 ^= (y0 & m0); z1 ^= (y1 & m0); z2 ^= (y2 & m0); z3 ^= (y3 & m0); long m1 = -(x1 & 1L); x1 >>>= 1; z1 ^= (y0 & m1); z2 ^= (y1 & m1); z3 ^= (y2 & m1); z4 ^= (y3 & m1); long c = y3 >> 63; y3 = (y3 << 1) | (y2 >>> 63); y2 = (y2 << 1) | (y1 >>> 63); y1 = (y1 << 1) | (y0 >>> 63); y0 = (y0 << 1) ^ (c & 0x425L); } long y4 = y3; y3 = y2; y2 = y1; y1 = y0 ^ (y4 >>> 62) ^ (y4 >>> 59) ^ (y4 >>> 54); y0 = y4 ^ (y4 << 2) ^ (y4 << 5) ^ (y4 << 10); for (int j = 0; j < 64; ++j) { long m2 = -(x2 & 1L); x2 >>>= 1; z0 ^= (y0 & m2); z1 ^= (y1 & m2); z2 ^= (y2 & m2); z3 ^= (y3 & m2); long m3 = -(x3 & 1L); x3 >>>= 1; z1 ^= (y0 & m3); z2 ^= (y1 & m3); z3 ^= (y2 & m3); z4 ^= (y3 & m3); long c = y3 >> 63; y3 = (y3 << 1) | (y2 >>> 63); y2 = (y2 << 1) | (y1 >>> 63); y1 = (y1 << 1) | (y0 >>> 63); y0 = (y0 << 1) ^ (c & 0x425L); } z0 ^= z4 ^ (z4 << 2) ^ (z4 << 5) ^ (z4 << 10); z1 ^= (z4 >>> 62) ^ (z4 >>> 59) ^ (z4 >>> 54); z[0] = z0; z[1] = z1; z[2] = z2; z[3] = z3; } public static void multiplyX(long[] x, long[] z) { long x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3]; long m = x3 >> 63; z[0] = (x0 << 1) ^ (m & 0x425L); z[1] = (x1 << 1) | (x0 >>> 63); z[2] = (x2 << 1) | (x1 >>> 63); z[3] = (x3 << 1) | (x2 >>> 63); } public static void multiplyX8(long[] x, long[] z) { long x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3]; long c = x3 >>> 56; z[0] = (x0 << 8) ^ c ^ (c << 2) ^ (c << 5) ^ (c << 10); z[1] = (x1 << 8) | (x0 >>> 56); z[2] = (x2 << 8) | (x1 >>> 56); z[3] = (x3 << 8) | (x2 >>> 56); } public static void one(long[] z) { z[0] = 1; z[1] = 0; z[2] = 0; z[3] = 0; } public static void square(long[] x, long[] z) { long[] t = new long[SIZE << 1]; for (int i = 0; i < SIZE; ++i) { Interleave.expand64To128(x[i], t, i << 1); } int j = SIZE << 1; while (--j >= SIZE) { long n = t[j]; t[j - SIZE ] ^= n ^ (n << 2) ^ (n << 5) ^ (n << 10); t[j - SIZE + 1] ^= (n >>> 62) ^ (n >>> 59) ^ (n >>> 54); } copy(t, z); } public static void x(long[] z) { z[0] = 2; z[1] = 0; z[2] = 0; z[3] = 0; } public static void zero(long[] z) { z[0] = 0; z[1] = 0; z[2] = 0; z[3] = 0; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy